Results 41 to 50 of about 50,648 (222)
Modulating Electrochemical CO2 Reduction Pathways via Interfacial Electric Field
Engineering interfacial electric fields in Cu/ITO electrodes enables precise control of CO2 reduction pathways. Charge transfer from Cu to ITO generates positively charged Cu species that steer selectivity from ethylene toward methane. This work demonstrates how interfacial electric‐field modulation can direct reaction intermediates and transform ...
Mahdi Salehi +7 more
wiley +1 more source
A combinatorial proof of a relationship between maximal $(2k-1,2k+1)$ and $(2k-1,2k,2k+1)$-cores
Integer partitions which are simultaneously $t$--cores for distinct values of $t$ have attracted significant interest in recent years. When $s$ and $t$ are relatively prime, Olsson and Stanton have determined the size of the maximal $(s,t)$-core $\kappa_{
Nath, Rishi, Sellers, James A.
core
Exploring the photocatalytic reverse water–gas shift (RWGS) reaction on doped SrTiO3 nanoparticle films, reveals that normalizing catalytic rates by the catalyst's specific surface area (SSA) disentangled surface area effects from the catalyst's intrinsic material properties.
Dikshita Bhattacharyya +6 more
wiley +1 more source
Congruences for spin characters of the double covers of the symmetric and alternating groups
Let $p$ be an odd prime. The bar partitions with sign and $p$-bar-core partitions with sign respectively label the spin characters and $p$-defect zero spin characters of the double cover of the symmetric group, and by restriction, those of the ...
Nath, Rishi, Sellers, James A.
core
Copper catalysts introduced with different non‐metallic elements regulating the coordination number of Cu are prepared by magnetron sputtering. Reducing the Cu coordination number enhances C─C coupling and boosts C2+ product selectivity, by lowering the energy barrier for the *CO → *CHO conversion step. The optimized Si‐doped Cu catalyst achieves a C2+
Xiaoye Du +8 more
wiley +1 more source
This review explores functional and responsive materials for triboelectric nanogenerators (TENGs) in sustainable smart agriculture. It examines how particulate contamination and dirt affect charge transfer and efficiency. Environmental challenges and strategies to enhance durability and responsiveness are outlined, including active functional layers ...
Rafael R. A. Silva +9 more
wiley +1 more source
This study explores the benefits of metasurfaces made from functional materials, highlighting their ability to be adapted and improved for various high‐frequency applications, including communications and sensing. It first demonstrates the potential of these functional material‐based metasurfaces to advance the field of sub‐THz perceptive networks ...
Yat‐Sing To +5 more
wiley +1 more source
Heterogeniety in electrochemical systems heavily influences device performance and durability. The study shows unique evidence of spatio‐operational heterogeneity in fuel cells via operando neutron and X‐ray tomography. Large variations in membrane thickness and hydration depend upon location and operating conditions, with implications on membrane ...
Pranay Shrestha +9 more
wiley +1 more source
Grain Boundary Space Charge Engineering of Solid Oxide Electrolytes: Model Thin Film Study
This study demonstrates unprecedented control of grain boundary electrical properties in solid electrolytes. Selective diffusion of cations through grain boundaries in thin films enables 12 orders of magnitude variation in ionic resistance, proving that systematic chemical modification of grain boundary electrical properties is feasible.
Thomas Defferriere +5 more
wiley +1 more source
High‐entropy perovskite nanofibers serve as robust and active bifunctional air electrodes in reversible protonic ceramic electrochemical cells. Their compositional complexity stabilizes the lattice, enriches oxygen vacancies, and accelerates surface exchange.
Hyeonggeun Kim +4 more
wiley +1 more source

