Results 21 to 30 of about 99,299 (234)
We discuss the design and implementation details of two conforming virtual element methods for the numerical approximation of two partial differential equations that emerge in phase-field modeling of fracture propagation in elastic material.
Yu Leng +6 more
doaj +1 more source
Non-local Gehring lemmas in spaces of homogeneous type and applications [PDF]
We prove a self-improving property for reverse H{\"o}lder inequalities with non-local right hand side. We attempt to cover all the most important situations that one encounters when studying elliptic and parabolic partial differential equations as well ...
Auscher, Pascal +3 more
core +1 more source
We use the improved general mapping deformation method based on the generalized Jacobi elliptic functions expansion method to construct some of the generalized Jacobi elliptic solutions for some nonlinear partial differential equations in mathematical ...
Khaled A. Gepreel
doaj +1 more source
An inverse problem for an elliptic partial differential equation
Für die elliptische Differentialgleichung \(\Delta u-a(x)u=0\) werden Anfangs- und Randbedingungen gestellt. Gesucht sind \(a=a(x)\) und \(u=u(x,y)\) in \(x>0\), \(y>0\). Hierfür wird ein Eindeutigkeitssatz gegeben und die Existenz und stetige Abhängigkeit von den Daten wird für genügend kleines x bewiesen. Wenn a priori bekannt ist, daß a(x)\(\geq 0\)
John R. Cannon, William Rundell
openaire +3 more sources
Fredholmness of an abstract differential equation of elliptic type
In this work, we obtain algebraic conditions which assure the Fredholm solvability of an abstract differential equation of elliptic type. In this respect, our work can be considered as an extension of Yakubov's results to the case of boundary conditions ...
A. Aibeche
doaj +1 more source
Localized direct boundary–domain integro–differential formulations for scalar nonlinear boundary-value problems with variable coefficients [PDF]
Mixed boundary-value Problems (BVPs) for a second-order quasi-linear elliptic partial differential equation with variable coefficients dependent on the unknown solution and its gradient are considered.
Mikhailov, SE
core +1 more source
An efficient method for 3D Helmholtz equation with complex solution
The Helmholtz equation as an elliptic partial differential equation possesses many applications in the time-harmonic wave propagation phenomena, such as the acoustic cavity and radiation wave.
M. H. Heydari +2 more
doaj +1 more source
This paper is concerned with, the proof of the existence and the uniqueness theorem for the solution of the state vector of a couple of nonlinear elliptic partial differential equations using the Minty-Browder theorem, where the continuous classical ...
Jamil Amir Al-hawasy +1 more
doaj +1 more source
On the initial value problem for a partial differential equation with operator coefficients
In the present work it is studied the initial value problem for an equation of the form L∂ku∂tk=∑j=1kLj∂k−ju∂tk−j,where L is an elliptic partial differential operator and (Lj:j=1,…,k) is a family of partial differential operators with bounded operator ...
Mahmoud M. El-Borai
doaj +1 more source
Strong solutions to semilinear SPDEs [PDF]
We study the Cauchy problem for a semilinear stochastic partial differential equation driven by a finite-dimensional Wiener process. In particular, under the hypothesis that all the coefficients are sufficiently smooth and have bounded derivatives, we ...
Hofmanova, Martina
core +6 more sources

