Results 201 to 210 of about 2,838,778 (340)

Living Liquid Metal Composites Embedded with Electrogenic Endospores for Next‐Generation Bioelectronics

open access: yesAdvanced Functional Materials, EarlyView.
A new class of living liquid metal composites is introduced, embedding Bacillus subtilis endospores into eutectic gallium–indium (EGaIn). The spores enhance droplet coalescence, strengthen interfacial conductivity, and provide on‐demand electrogenic functionality after germination. The composites exhibit high conductivity, self‐healing, patternability,
Maryam Rezaie, Yang Gao, Seokheun Choi
wiley   +1 more source

Electron–Matter Interactions During Electron Beam Nanopatterning

open access: yesAdvanced Functional Materials, EarlyView.
This article reviews the electron–matter interactions important to nanopatterning with electron beam lithography (EBL). Electron–matter interactions, including secondary electron generation routes, polymer radiolysis, and electron beam induced charging, are discussed.
Camila Faccini de Lima   +2 more
wiley   +1 more source

Extensive Review of Materials for Next‐Generation Transparent Batteries and Their Design Strategies

open access: yesAdvanced Functional Materials, EarlyView.
Review explores emerging materials and design strategies for transparent batteries, examining electrodes, electrolytes, separators, and device architectures optimized for high electrochemical performance, mechanical flexibility, and optical transparency.
Atul Kumar Mishra   +5 more
wiley   +1 more source

Gram‐Scale Production of Iron Oxide Rubik‐Cube Nanoparticles: New Tools for the Clinical Translation of Magnetic Hyperthermia and Magnetic Particle Imaging

open access: yesAdvanced Functional Materials, EarlyView.
This work reports the first gram‐scale solvothermal synthesis of ‘Rubik's cube’ nanoparticles—cubic, dendritic multicore structures with tuneable sizes and exceptional magnetic heating performance. Featuring iron oxide single‐domain character, with low coercivity fields, high magnetization, and strong MPI signals, they enable viscosity‐independent ...
Giusy M. R. Rizzo   +12 more
wiley   +1 more source

Multistackable, Domino‐Overlapped CNT Scaffolds Homogeneously Hybridized with BTO‐P(VDF‐TrFE) for High‐Performance Piezoelectric Nanogenerators

open access: yesAdvanced Functional Materials, EarlyView.
A multilayer‐stackable carbon nanotuber (CNT) scaffold‐based piezoelectric nanogenerator (CPENG) with domino‐patterned CNT pillars presents high, stable output (12.3 V, size of 1 cm × 1 cm) over 2000 cycles, operates across a wide temperature range, and efficiently converts energy from real‐life stimuli through optimized CNT length, layer stacking, and
Kwangjun Kim   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy