Results 231 to 240 of about 1,333,137 (294)

Laser‐Induced Graphene from Waste Almond Shells

open access: yesAdvanced Functional Materials, EarlyView.
Almond shells, an abundant agricultural by‐product, are repurposed to create a fully bioderived almond shell/chitosan composite (ASC) degradable in soil. ASC is converted into laser‐induced graphene (LIG) by laser scribing and proposed as a substrate for transient electronics.
Yulia Steksova   +9 more
wiley   +1 more source

Final roadmap emission reduction

open access: yes
Final report of use case cluster 3 - emissions reduction. Summary and conclusions from the five use cases of this cluster, fundamentals and performance characteristics of two full-size aftertreatment ...
openaire   +1 more source

Near‐Infrared Emitting Lanthanide Catecholate Giant Single Crystals – Morphology Control and Photon Down‐Conversion

open access: yesAdvanced Functional Materials, EarlyView.
Controlled syntheses of lanthanide coordination polymers based on the dihydroxybenzoquinone (DHBQ) organic linker afforded large single crystals of Ln‐DHBQ CPs (Ln = Yb, Nd). A novel structural variant of Yb‐DHBQ is identified by means of single crystal diffraction analysis.
Marina I. Schönherr   +7 more
wiley   +1 more source

Emission reduction strategies and health: a systematic review on the tools and methods to assess co-benefits. [PDF]

open access: yesBMJ Open
Abdala SA   +9 more
europepmc   +1 more source

Double Helical Plasmonic Antennas

open access: yesAdvanced Functional Materials, EarlyView.
Plasmonic double helical antennas funnel circularly polarized light to the nanoscale, offering strong chiroptical interaction and directional light emission. Extending a single helix design tool, this study combines numerical modeling with experimental validation, revealing large, broadband dissymmetry factors in the visible range.
Aleksei Tsarapkin   +7 more
wiley   +1 more source

Patterning the Void: Combining L‐Systems with Archimedean Tessellations as a Perspective for Tissue Engineering Scaffolds

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a novel multi‐scale scaffold design using L‐fractals arranged in Archimedean tessellations for tissue regeneration. Despite similar porosity, tiles display vastly different tensile responses (1–100 MPa) and deformation modes. In vitro experiments with hMSCs show geometry‐dependent growth and activity. Over 55 000 tile combinations
Maria Kalogeropoulou   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy