Results 241 to 250 of about 372,613 (338)

Colloidal Crack Sintering Lithography for Light‐Induced Patterning of Particle Assemblies

open access: yesAdvanced Functional Materials, EarlyView.
Colloidal crack sintering lithography (CCSL) is a microfabrication technique that uses light‐induced photothermal heating to trigger sintering and controlled cracking in polymer colloidal assemblies. Local structural changes generate microchannels and patterns, enabling direct writing of diverse topographic motifs.
Marius Schoettle   +2 more
wiley   +1 more source

Molecular Characterization of an EMS-Induced Ab-γg-Rich Saponin Mutant in Soybean (Glycine max (L.) Merr.) [PDF]

open access: gold
Junbeom Park   +7 more
openalex   +1 more source

Reinforced Concrete‐Inspired Multiscale Hierarchical Metamaterial Composite for Synergistic Enhancement Across Thermal, Electromagnetic, and Mechanical Domains

open access: yesAdvanced Functional Materials, EarlyView.
A structurally integrated multiscale hierarchical metamaterial composite (MHMC), inspired by the synergistic architecture of reinforced concrete, achieves simultaneous enhancement of thermal, electromagnetic, and mechanical functionalities. By combining a carbon black‐based mechanical metamaterial with a porosity‐graded cellulose acetate aerogel, this ...
Jeongwoo Lee   +9 more
wiley   +1 more source

Bystander interventions and their impact on road injury outcomes: a scoping review. [PDF]

open access: yesScand J Trauma Resusc Emerg Med
Aveyard N   +3 more
europepmc   +1 more source

The Anisotropic Adsorption of De Novo Allosteric Two‐Component Protein Fibers on Mica Surfaces

open access: yesAdvanced Functional Materials, EarlyView.
In this study, the interfacial behavior of de novo designed proteins that self‐assemble into tubular architectures with distinct morphologies — small (S), large (L), and helical (H) fibers — at the muscovite mica‐water interface is explored using in situ AFM. Abstract Protein adsorption at solid–liquid interfaces underlies many biomedical and materials
Chenyang Shi   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy