Results 51 to 60 of about 110,436 (285)

3D In Vitro Models of Breast Cancer: Current Challenges and Future Prospects Toward Recapitulating the Microenvironment and Mimicking Key Processes

open access: yesAdvanced Biology, EarlyView.
In vitro cancer models are advantageous for studying important processes such as tumorigenesis, cancer growth, invasion, and metastasis. The complexity and biological relevance increase depending on the model structure, organization, and composition of materials and cells.
Kyndra S. Higgins   +2 more
wiley   +1 more source

Role of Neuroactive Steroids in Health and Disease

open access: yesBiomolecules
Steroidogenesis occurs not only in endocrine peripheral glands (i [...]
Roberto Cosimo Melcangi
doaj   +1 more source

Nivolumab Induced Thyroid Dysfunction: Unusual Clinical Presentation and Challenging Diagnosis

open access: yesFrontiers in Endocrinology, 2019
In recent years, immune checkpoint inhibitors (ICIs) had a great impact in cancer therapy. ICIs display a peculiar toxicity profile, which is characterized by autoimmune-like manifestations against multiple organs, including endocrine glands.
Carmine Iadarola   +11 more
doaj   +1 more source

Adipose Mesenchymal Stem Cell‐Derived Exosomes in Conjunction with Roflumilast Ameliorate Chronic Kidney Disease Through the Modulation of Fibrosis and Inflammation

open access: yesAdvanced Biology, EarlyView.
The novelty of this study showed that the injection of exosomes produced from ADMSCs in combination with Roflumilast poses a more favorable therapeutic outcome for CKD induced by Adriamycin, compared to therapy with exosomes or Roflumilast alone. Roflumilast and exosomes treatment lowered the expression of the apoptotic, fibrotic, and inflammatory ...
Mohamed Ali   +5 more
wiley   +1 more source

3D Bioprinting of Thick Adipose Tissues with Integrated Vascular Hierarchies

open access: yesAdvanced Functional Materials, Volume 35, Issue 12, March 18, 2025.
An advanced 3D bioprinting technique is used here to create thick adipose tissues with a central, vessel and extensive branching. The construct is made using alginate, gelatin and collagen‐based bioinks. Flow through the complex vessel network is demonstrated as well as its successful integration with a femoral artery following implantation in a rat ...
Idit Goldfracht   +5 more
wiley   +1 more source

Matrix Tropism Influences Endometriotic Cell Attachment Patterns

open access: yesAdvanced Functional Materials, EarlyView.
The influence of substrate stiffness and multicellular coculture on endometriotic cell attachment to extracellular matrix‐laden microarrayed islands is reported. This model investigates early endometriotic cell attachment, aiming to capture “lesion initiation events”.
Hannah S. Theriault   +7 more
wiley   +1 more source

Tunable Synthetic Hydrogel Modulates Hepatic Lineage Specification of Human Liver Organoid

open access: yesAdvanced Functional Materials, EarlyView.
In this study, a synthetic hydrogel is reported that supports the formation of hiPSC‐derived human liver organoids (HLOs). Hepatic lineage specification can be modulated via conjugation of RGD peptide to hydrogel: RGD‐conjugated hydrogels promote cholangiocyte differentiation, whereas RGD‐free hydrogels favor hepatocyte commitment of HLO cells.
Lei Wang   +16 more
wiley   +1 more source

Biomaterial Strategies for Targeted Intracellular Delivery to Phagocytes

open access: yesAdvanced Functional Materials, EarlyView.
Phagocytes are essential to a functional immune system, and their behavior defines disease outcomes. Engineered particles offer a strategic opportunity to target phagocytes, harnessing inflammatory modulation in disease. By tuning features like size, shape, and surface, these systems can modulate immune responses and improve targeted treatment for a ...
Kaitlyn E. Woodworth   +2 more
wiley   +1 more source

3D Multicellular Scaffold Based Model for Advancing Bone Disorder Research

open access: yesAdvanced Functional Materials, EarlyView.
A scalable 3D multicellular in vitro bone model engineered by integrating osteoblasts, osteoclasts, and endothelial cells on biodegradable scaffolds. The system recapitulates key features of human bone remodeling and disease pathology. As a proof of concept, the model mimics osteogenesis imperfecta, demonstrating its potential as a physiologically ...
Gali Guterman‐Ram   +5 more
wiley   +1 more source

Mechanically Tunable Bone Scaffolds: In Vivo Hardening of 3D‐Printed Calcium Phosphate/Polycaprolactone Inks

open access: yesAdvanced Functional Materials, EarlyView.
A 3D bone scaffold with osteogenic properties and capable of hardening in vivo is developed. The scaffold is implanted in a ductile state, and a phase transformation of the ceramic induces the stiffening and strengthening of the scaffold in vivo. Abstract Calcium phosphate 3D printing has revolutionized customized bone grafting.
Miguel Mateu‐Sanz   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy