Results 191 to 200 of about 368,686 (349)

They will be famous: Multipotent stem cells in breast milk. [PDF]

open access: yesWorld J Clin Pediatr
Faa G   +5 more
europepmc   +1 more source

A Multifunctional Nanodelivery System Modified by Fusion Peptides Acts as Teriparatide Carrier for Noise‐Induced Hearing Loss Therapy

open access: yesAdvanced Science, EarlyView.
The fusion peptide LR27‐modified thermosensitive nanodelivery system exhibits both hair cell targeting and inner ear penetrating properties. This system sustainably and effectively delivers PTH1‐34 to the inner ear of a hearing loss mouse model via the synergistic effects of multiple peptides, achieving satisfactory hearing protection through ...
Jiawen Li   +12 more
wiley   +1 more source

Presbycusis: Pathology, Signal Pathways, and Therapeutic Strategy

open access: yesAdvanced Science, EarlyView.
In ARHL, the stria vascularis, acting as a cochlear battery, gradually loses its ability to maintain the endocochlear potential, leading to impaired hair cell function and progressive hearing loss. Single‐cell sequencing reveals age‐related cellular changes in the cochlea, providing insights into the underlying mechanisms of aging and potential ...
Xiaoxu Zhao   +12 more
wiley   +1 more source

Influence of the transferred coronavirus infection on diseases of the endocrine system in athletes

open access: diamond, 2023
E. A. Tenyaeva   +3 more
openalex   +2 more sources

Rational Design of Inner Ear Drug Delivery Systems

open access: yesAdvanced Science, EarlyView.
Hearing loss is a common disease affecting many people, and inner ear lesions are one of the most important causes. This review focuses on the treatment of inner ear hearing loss by drug delivery systems. It includes the current methods and technologies developed, and it predicts possible directions.
Xiayidan Maimaitikelimu   +5 more
wiley   +1 more source

Alnustone Ameliorates Metabolic Dysfunction‐Associated Steatotic Liver Disease by Facilitating Mitochondrial Fatty Acid β‐Oxidation via Targeting Calmodulin

open access: yesAdvanced Science, EarlyView.
This study identifies alnustone, a natural compound from Alpinia katsumadai, as a potent therapeutic agent for MASLD and MASH. Alnustone enhances mitochondrial fatty acid β‐oxidation by directly targeting calmodulin, improving liver steatosis, fibrosis, and insulin resistance in vivo.
Shourui Hu   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy