Results 21 to 30 of about 9,718 (86)
Topological K‐theory of quasi‐BPS categories for Higgs bundles
Abstract In a previous paper, we introduced quasi‐BPS categories for moduli stacks of semistable Higgs bundles. Under a certain condition on the rank, Euler characteristic, and weight, the quasi‐BPS categories (called BPS in this case) are noncommutative analogues of Hitchin integrable systems.
Tudor Pădurariu, Yukinobu Toda
wiley +1 more source
Decomposing elements of a right self-injective ring [PDF]
It was proved independently by both Wolfson [An ideal theoretic characterization of the ring of all linear transformations, Amer. J. Math. 75 (1953), 358-386] and Zelinsky [Every Linear Transformation is Sum of Nonsingular Ones, Proc. Amer. Math. Soc. 5 (
Siddique, Feroz, Srivastava, Ashish K.
core
Universal deformation rings for the symmetric group S_4
Let k be an algebraically closed field of characteristic 2, and let W be the ring of infinite Witt vectors over k. Let S_4 denote the symmetric group on 4 letters.
A. Wiles +18 more
core +1 more source
Existence and orthogonality of stable envelopes for bow varieties
Abstract Stable envelopes, introduced by Maulik and Okounkov, provide a family of bases for the equivariant cohomology of symplectic resolutions. They are part of a fascinating interplay between geometry, combinatorics and integrable systems. In this expository article, we give a self‐contained introduction to cohomological stable envelopes of type A$A$
Catharina Stroppel, Till Wehrhan
wiley +1 more source
Basic Module Theory over Non-Commutative Rings with Computational Aspects of Operator Algebras
The present text surveys some relevant situations and results where basic Module Theory interacts with computational aspects of operator algebras. We tried to keep a balance between constructive and algebraic aspects.Comment: To appear in the Proceedings
A. Kandri-Rody +54 more
core +1 more source
Growth problems in diagram categories
Abstract In the semisimple case, we derive (asymptotic) formulas for the growth rate of the number of summands in tensor powers of the generating object in diagram/interpolation categories.
Jonathan Gruber, Daniel Tubbenhauer
wiley +1 more source
Classifying thick subcategories over a Koszul complex via the curved BGG correspondence
Abstract In this work, we classify the thick subcategories of the bounded derived category of dg modules over a Koszul complex on any list of elements in a regular ring. This simultaneously recovers a theorem of Stevenson when the list of elements is a regular sequence and the classification of thick subcategories for an exterior algebra over a field ...
Jian Liu, Josh Pollitz
wiley +1 more source
The geometry and arithmetic of bielliptic Picard curves
Abstract We study the geometry and arithmetic of the curves C:y3=x4+ax2+b$C \colon y^3 = x^4 + ax^2 + b$ and their associated Prym abelian surfaces P$P$. We prove a Torelli‐type theorem in this context and give a geometric proof of the fact that P$P$ has quaternionic multiplication by the quaternion order of discriminant 6.
Jef Laga, Ari Shnidman
wiley +1 more source
Matrix representations of endomorphism rings for torsion-free abelian groups
E. A. Blagoveshchenskaya +1 more
openalex +3 more sources
A note on local formulae for the parity of Selmer ranks
Abstract In this note, we provide evidence for a certain ‘twisted’ version of the parity conjecture for Jacobians, introduced in prior work of Dokchitser, Green, Konstantinou and the author. To do this, we use arithmetic duality theorems for abelian varieties to study the determinant of certain endomorphisms acting on p∞$p^\infty$‐Selmer groups.
Adam Morgan
wiley +1 more source

