Results 201 to 210 of about 1,489,573 (315)

Enhanced Switching Performance in Single‐Crystalline PbTiO3 Ferroelectric Memristors for Replicating Synaptic Plasticity

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrated single‐crystalline PbTiO3‐based memristors with atomically sharp interfaces, well‐ordered lattices, and minimal lattice mismatch. The devices exhibited an ON/OFF ratio exceeding 105, high stability, and rich resistance‐state modulation.
Haining Li   +7 more
wiley   +1 more source

Enzyme‐Regulated Extended Swelling of Hydrogels for Dehiscence‐Less Tissue Expansions

open access: yesAdvanced Functional Materials, EarlyView.
An interpenetrating hydrogel network with swelling under regulation by enzymatic degradation (INSURED) is fabricated to avoid dehiscence. INSURED remains structurally intact post‐implantation, while HYAL injection enables control over the onset and rate of swelling.
Byung Ik Park   +10 more
wiley   +1 more source

Emergence of Light‐Transforming Layered Hybrid Halide Perovskites

open access: yesAdvanced Functional Materials, EarlyView.
The emerging class of light‐transforming layered halide perovskite materials is reviewed, outlining challenges for their development and perspectives toward application in the future. Abstract Layered hybrid halide perovskites (LHPs) have attracted considerable attention in optoelectronics.
Ghewa AlSabeh, Jovana V. Milić
wiley   +1 more source

Removal of Steroid Hormone Micropollutants by an Electrochemical Carbon Nanotube Membrane Flow‐Through Reactor: Role of Concentration and Degradation Mechanisms

open access: yesAdvanced Functional Materials, EarlyView.
A flow‐through electrochemical membrane reactor equipped with a carbon nanotube membrane eliminates the mass transfer limitation, achieving removals >97.5% for steroid hormone (SH) micropollutants through electrochemical adsorption and degradation, over a broad initial concentration varying from 50 to 106 ng L−1.
Siqi Liu   +2 more
wiley   +1 more source

CO2 Reduction on Copper‐Nitrogen‐Doped Carbon Catalysts Tuned by Pulsed Potential Electrolysis: Effect of Pulse Potential

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates that pulsed potential electrolysis significantly improves CO2 reduction performance on copper‐nitrogen doped carbon electrodes. The formation of cationic copper sites and metallic clusters as a function of applied intermittent potential leads to notable selectivity changes compared to potentiostatic reduction.
Dorottya Hursán   +13 more
wiley   +1 more source

Effect of Sm3+ Doping on Energy Storage Property and Thermal Stability of BaSnxTi1−xO3 Ceramics [PDF]

open access: gold
Zhonghua Qin   +6 more
openalex   +1 more source

Home - About - Disclaimer - Privacy