Results 61 to 70 of about 52,283 (152)
Abstract Three instruments–Raman spectroscopy, attenuated total reflectance–Fourier transform infrared spectroscopy, and focused beam reflectance measurement–were used to detect sensor faults, mixing faults, and unanticipated chemistry in a system of multicomponent slurries.
Steven H. Crouse +2 more
wiley +1 more source
3D investigation and modeling of the geometric effects on porosity in packed beds
Abstract In porous beds, physical boundaries restrict particle arrangement, leading to inhomogeneous porosity. This paper reports on the porosity profiles that are the result of geometric effects on monodisperse packed beds in cylindrical and cubic arrangements. Special focus is given to the influence of edges and corners in cubic geometries.
Bastian Oldach +3 more
wiley +1 more source
Abstract Under time‐varying electricity prices, the production costs of Power‐to‐X processes with intermediate storage can be reduced by simultaneously optimizing the process unit design and size with their scheduling and operation. However, the production cost sensitivity to optimal process design or scheduling is unclear, especially when several ...
Simone Mucci, Dominik Bongartz
wiley +1 more source
Abstract This work experimentally validates the RESPONSE (Resilient Process cONtrol SystEm) framework as a solution for maintaining safe, continuous operation of cyber‐physical process systems under cyberattacks. RESPONSE implements a dual‐loop architecture that runs a networked online controller in parallel with a hard‐isolated offline controller ...
Luyang Liu +5 more
wiley +1 more source
Abstract Generating hydrogel beads pertains to many engineering applications. We examined two alginate‐based fluids at three concentrations of alginate, cAG$$ {c}_{\mathrm{AG}} $$. We used the “Map of Misery” to determine which material property (viscosity, elasticity, and inertia) drives droplet formation.
Conor G. Harris +5 more
wiley +1 more source
A Machine Learning Model for Interpretable PECVD Deposition Rate Prediction
This study develops six machine learning models (k‐nearest neighbors, support vector regression, decision tree, random forest, CatBoost, and backpropagation neural network) to predict SiNx deposition rates in plasma‐enhanced chemical vapor deposition using hybrid production and simulation data.
Yuxuan Zhai +8 more
wiley +1 more source
Smart Bioinspired Material‐Based Actuators: Current Challenges and Prospects
This work gathers, in a review style, an extensive and comprehensive literature overview on the development of autonomous actuators based on synthetic materials, bringing together valuable knowledge from several studies. Furthermore, the article identifies the fundamental principles of actuation mechanisms and defines key parameters to address the size
Alejandro Palacios +4 more
wiley +1 more source
A Dual‐Ion Multiphysics Model for Smart and Sustainable Sensors Based on Bacterial Cellulose
Bacterial cellulose (BC), functionalized with ionic liquids (ILs) and conductive polymers, offers promise for sustainable sensor applications. To enable real‐world integration, this work presents the first dual‐carrier, multiphysics white‐box model of mechanoelectric transduction in BC–IL sensors, combining mechanical deformation and ion transport ...
Francesca Sapuppo +7 more
wiley +1 more source
The polymerase chain reaction (PCR).Perturbation Theory and Machine Learning framework integrates perturbation theory and machine learning to classify genetic sequences, distinguishing ancient DNA from modern controls and predicting tree health from soil metagenomic data.
Jose L. Rodriguez +19 more
wiley +1 more source
Effective Material Stiffness in Curved Actuators
A new actuator effective material stiffness measurement method is created. It produces a new metric called shape actuation modulus with the potential to help design actuators. This method shows that the smaller the curvature of hinge‐shaped actuators, the stiffer they are.
Charles de Kergariou +3 more
wiley +1 more source

