Results 251 to 260 of about 819,100 (336)

Ultrafast Energy Transfer Induced Lasing From a Coplanar Donor‐Acceptor‐Donor Molecule in a Microspherical Cavity

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a novel donor‐bridge‐acceptor‐bridge‐donor (D‐B‐A‐B‐D) molecular system, which shows near‐unity intramolecular excitation energy transfer (IET) from two identical energy donors to a coplanar acceptor. It enables a four‐level energy system for efficient lasing at the acceptor emission band in a microspherical cavity with a low lasing
Vishal Kumar   +6 more
wiley   +1 more source

Few-Shot Symbol Detection in Engineering Drawings

open access: gold
Laura Jamieson   +2 more
openalex   +1 more source

Copper‐based Materials for Photo and Electrocatalytic Process: Advancing Renewable Energy and Environmental Applications

open access: yesAdvanced Functional Materials, EarlyView.
Cu‐based catalysts as a cornerstone in advancing sustainable energy technologies are fully reviewed in this manuscript, highlighting their potential in photo‐ and electrocatalysis. It includes metallic copper, copper oxides, copper sulfides, copper halide perovskites, copper‐based metal–organic frameworks (MOFs), and covalent organic frameworks (COFs),
Jéssica C. de Almeida   +16 more
wiley   +1 more source

Preparation Process of In Situ MgB2 Material with Ex Situ MgB2 Barrier to Obtain Long Sections of Superconducting Multicore Wires. [PDF]

open access: yesMaterials (Basel)
Filar K   +7 more
europepmc   +1 more source

Al1‐xScxN‐Based Ferroelectric Domain‐Wall Memristors

open access: yesAdvanced Functional Materials, EarlyView.
(a) Conductive atomic force microscopy (CAFM) image of the initial state bidomain structure of the Al0.85Sc0.15N (a) showing an enhanced conductivity of the head‐to‐head domain boundary. (b) CAFM image of the same area after application of several −65 V, 1 s voltage pulses showing lower conductivity of the generated tail‐to‐tail domain walls.
Haidong Lu   +11 more
wiley   +1 more source

Decoding the Structure of Benzodithiophene Polymers for High‐Efficiency Organic Solar Cells

open access: yesAdvanced Functional Materials, EarlyView.
This study reveals a unique solid mesophase in top‐performing benzodithiophene‐based polymers for solar cells, comprising stacked solid‐like and liquid‐like layers. Combining nanoscale fibrillar domains with amorphous regions, it introduces a new structural paradigm.
Matteo Sanviti   +16 more
wiley   +1 more source

Home - About - Disclaimer - Privacy