Results 271 to 280 of about 3,131,225 (327)

Synchrotron Radiation for Quantum Technology

open access: yesAdvanced Functional Materials, EarlyView.
Materials and interfaces underpin quantum technologies, with synchrotron and FEL methods key to understanding and optimizing them. Advances span superconducting and semiconducting qubits, 2D materials, and topological systems, where strain, defects, and interfaces govern performance.
Oliver Rader   +10 more
wiley   +1 more source

Lipid Nanoparticles for the Delivery of CRISPR/Cas9 Machinery to Enable Site‐Specific Integration of CFTR and Mutation‐Agnostic Disease Rescue

open access: yesAdvanced Functional Materials, EarlyView.
Lipid nanoparticles (LNPs) are optimized to co‐deliver Cas9‐encoding messenger RNA (mRNA), a single guide RNA (sgRNA) targeting the endogenous cystic fibrosis transmembrane conductance regulator (CFTR) gene, and homologous linear double‐stranded donor DNA (ldsDNA) templates encoding CFTR.
Ruth A. Foley   +12 more
wiley   +1 more source

Plasma‐Treated Hydrogel for Combined RONS and Chemotherapy Delivery: A Proof‐of‐Concept In Ovo

open access: yesAdvanced Functional Materials, EarlyView.
This study explores plasma‐treated hydrogels (PTH) as a new way to deliver both reactive oxygen and nitrogen species and chemotherapy (Doxorubicin) directly to tumors. In ovo tests show effects after a single dose, especially in osteosarcoma tumors. Tumor weight decrease, and a resistance‐related protein is reduced.
Milica Živanić   +9 more
wiley   +1 more source

Optimum energy management of distribution networks with integrated decentralized PV-BES systems using SPEA2-based optimization approach. [PDF]

open access: yesSci Rep
Aksbi A   +9 more
europepmc   +1 more source

Atomic Size Misfit for Electrocatalytic Small Molecule Activation

open access: yesAdvanced Functional Materials, EarlyView.
This review explores the application and mechanisms of atomic size misfit in catalysis for small molecule activation, focusing on how structural defects and electronic properties can effectively lower the energy barriers of chemical bonds in molecules like H2O, CO2, and N2.
Ping Hong   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy