Results 271 to 280 of about 1,759,415 (331)

Unveiling Complementary Unipolar Electrical Transport in ZnO‐Co3O4 Core–Shell Nanowires Exploiting Iontronics

open access: yesAdvanced Materials Technologies, EarlyView.
Complementary unipolar electrical transport is demonstrated in ZnO‐Co3O4 core–shell nanowires, by engineering multi‐terminal device architectures that allow to selectively address different sections of the nanostructure and resorting on ionic liquid gating for conformal capacitive coupling and field effect control.
Valeria Demontis   +5 more
wiley   +1 more source

Nanoporous Microelectrodes for Neural Electrophysiology Recordings in Organotypic Culture

open access: yesAdvanced Materials Technologies, EarlyView.
The highly porous microelectrodes have been designed and printed on culture membranes, allowing to record electrophysiological neural activity for rodent brain slices. To keep the biocompatible nanoporous structure, the microelectrodes and insulative layer are fabricated on the bottom of culture membranes with only small connector pads added on the top.
Petro Lutsyk   +3 more
wiley   +1 more source

Programmable Dimensional Lithography with Digital Micromirror Devices for Multifunctional Microarchitectures

open access: yesAdvanced Materials Technologies, EarlyView.
This review explores recent advances in digital micromirror device (DMD)‐based lithography, focusing on its programmable light modulation, multi‐material compatibility, and dimensional patterning strategies. It highlights innovations from optical system design to materials integration and multifunctional applications, positioning DMD lithography as a ...
Yubin Lee   +5 more
wiley   +1 more source

Printed 2.5D‐Microstructures with Material‐Specific Functionalization for Tunable Biosensing

open access: yesAdvanced Materials Technologies, EarlyView.
The 2.5D‐MiSENSE platform integrates a microstructured biosensor with an in‐line milking pipeline to enable real‐time detection of mastitis biomarkers during active milk flow. The system uses a 2.5D microengineered surface and patterned electrodes to enhance milk–sensor interaction.
Matin Ataei Kachouei   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy