Results 31 to 40 of about 11,738 (234)
Note on r-central Lah numbers and r-central Lah-Bell numbers
The r-Lah numbers generalize the Lah numbers to the r-Stirling numbers in the same sense. The Stirling numbers and the central factorial numbers are one of the important tools in enumerative combinatorics. The r-Lah number counts the number of partitions
Hye Kyung Kim
doaj +1 more source
Total positivity for cominuscule Grassmannians [PDF]
In this paper we explore the combinatorics of the non-negative part $(G/P)_{\geq 0}$ of a cominuscule Grassmannian. For each such Grassmannian we define Le-diagrams ― certain fillings of generalized Young diagrams which are in bijection with the cells of
Thomas Lam, Lauren Williams
doaj +1 more source
Algebraic and geometric methods in enumerative combinatorics [PDF]
A survey written for the upcoming "Handbook of Enumerative Combinatorics".
Federico Ardila
openalex +3 more sources
A Didactic Analysis of Functional Queues
When first introduced to the analysis of algorithms, students are taught how to assess the best and worst cases, whereas the mean and amortized costs are considered advanced topics, usually saved for graduates.
Christian RINDERKNECHT
doaj +1 more source
Bayer noise quasisymmetric functions and some combinatorial algebraic structures [PDF]
Recently, quasisymmetric functions have been widely studied due to their big connection to enumerative combinatorics, combinatorial Hopf algebra and number theory.
Adnan Abdulwahid
doaj +1 more source
Tangency quantum cohomology and characteristic numbers
This work establishes a connection between gravitational quantum cohomology and enumerative geometry of rational curves (in a projective homogeneous variety) subject to conditions of infinitesimal nature like, for example, tangency.
JOACHIM KOCK
doaj +1 more source
Some applications of Rees products of posets to equivariant gamma-positivity [PDF]
The Rees product of partially ordered sets was introduced by Bj\"orner and Welker. Using the theory of lexicographic shellability, Linusson, Shareshian and Wachs proved formulas, of significance in the theory of gamma-positivity, for the dimension of the
Athanasiadis, Christos A.
core +3 more sources
COMBINATORIAL ANALYSIS OF THE DOMINOES SCHEME AND THE CASE OF FIXED MINIMAL FIGURE ON A DOMINO TILE
The dominoes scheme is defined as a scheme of random tiling with poliomino tiles with $r$ ends and $n$ figures from 0 to $(n-1)$ on the ends of tiles of all possible compositions with repetitions, regardless of their order.
Natalia Enatskaya
doaj +1 more source
Unimodality Problems in Ehrhart Theory
Ehrhart theory is the study of sequences recording the number of integer points in non-negative integral dilates of rational polytopes. For a given lattice polytope, this sequence is encoded in a finite vector called the Ehrhart $h^*$-vector. Ehrhart $h^*
A. Stapledon +45 more
core +1 more source
Enumerative combinatorics on determinants and signed bigrassmannian polynomials
As an application of linear algebra for enumerative combinatorics, we introduce two new ideas, signed bigrassmannian polynomials and bigrassmannian determinant. First, a signed bigrassmannian polynomial is a variant of the statistic given by the number of bigrassmannian permutations below a permutation in Bruhat order as Reading suggested (2002) and ...
Masato Kobayashi
openalex +5 more sources

