Results 221 to 230 of about 1,005,131 (240)

Maillard Type Reaction for Electroless Copper Plating onto Ceramic Nanoparticles

open access: yesAdvanced Engineering Materials, EarlyView.
This work presents the manufacturing of copper‐plated ceramic nanoparticles in an environmentally friendly way. Supported by organic functionalizations with pectin an electroless plating step can be performed. Sustainable reagents like xylose, and several amino acids are used for the reduction process.
Lukas Mielewczyk   +8 more
wiley   +1 more source

Icephobic Gradient Polymer Coatings Coupled with Electromechanical De‐icing Systems: A Promising Ice Repellent Hybrid System

open access: yesAdvanced Engineering Materials, EarlyView.
A hybrid system for de‐icing made of gradient polymer coatings, deposited on aluminum coupled with an electromechanical system, is demonstrated as an effective and durable strategy for reducing drastically ice adhesion. The system is capable of detaching ice blocks over the coating in less than 1 s, regardless of the ice type and covered area ...
Gabriel Hernández Rodríguez   +8 more
wiley   +1 more source

Comparative Wear and Friction Analysis of Sliding Surface Materials for Hydrostatic Bearing under Oil Supply Failure Conditions

open access: yesAdvanced Engineering Materials, EarlyView.
Hydrostatic bearings excel in high‐precision applications, but their performance hinges on a continuous external supply. This study evaluates various material combinations for sliding surfaces to mitigate damage during supply failures or misalignment and to discover the most effective materials identified for enhancing the reliability and efficiency of
Michal Michalec   +6 more
wiley   +1 more source

A Different Perspective on the Solid Lubrication Performance of Black Phosphorous: Friend or Foe?

open access: yesAdvanced Engineering Materials, EarlyView.
Researchers investigate black phosphorous (BP) as a standalone solid lubricant coating through ball‐on‐disc linear‐reciprocating sliding experiments in dry conditions. Testing on different metals shows BP doesn't universally reduce friction and wear. However, it achieves 33% friction reduction on rougher iron surfaces and 23% wear reduction on aluminum.
Matteo Vezzelli   +5 more
wiley   +1 more source

Development of a Novel Processing Route for Dispersoid/Precipitation‐Strengthened High Conductive Copper Alloys by Using Metalized Nanoceramics in Additive Manufacturing

open access: yesAdvanced Engineering Materials, EarlyView.
This study explores a process chain to produce dispersoid‐strengthened CuCr1Zr for applications requiring high strength and conductivity. Using gas‐atomized powder and copper‐plated alumina nanoparticles, additive manufacturing is performed via powder bed based additive manufacturing with green and red lasers, followed by heat treatment.
Heinrich von Lintel   +7 more
wiley   +1 more source

A Perspective on Powder Metallurgy and Additive Manufacturing of High‐Nitrogen Alloyed Stainless Steels

open access: yesAdvanced Engineering Materials, EarlyView.
This perspective article explores an innovative powder metallurgical approach to producing high‐nitrogen steels by utilizing a mixture of stainless steel and Si3N4. This mixture undergoes hot isostatic pressing followed by direct quenching. The article also examines adapting this method to laser powder bed fusion (PBF‐LB/M) to overcome nitrogen ...
Louis Becker   +5 more
wiley   +1 more source

Advances in Hybrid Icing and Frosting Protection Strategies for Optics, Lens, and Photonics in Cold Environments Using Thin‐Film Acoustic Waves

open access: yesAdvanced Engineering Materials, EarlyView.
This article provides a comprehensive overview of fundamentals and recent advances of transparent thin‐film surface acoustic wave technologies on glass substrates for monitoring and prevention/elimination of fog, ice, and frost. Fogging, icing, or frosting on optical lenses, optics/photonics, windshields, vehicle/airplane windows, and solar panel ...
Hui Ling Ong   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy