Results 251 to 260 of about 1,975,305 (345)

Green Solvent Enabled Perovskite Ink for Ambient‐Air‐Processed Efficient Inkjet‐Printed Perovskite Solar Cells

open access: yesAdvanced Functional Materials, EarlyView.
This study explores an eco‐friendly solvent with 1,3‐dimethyl‐2‐imidazolidinone for developing perovskite ink, enhancing grain size and formation of purer phase perovskite. The inkjet‐printed perovskite solar cells demonstrated a remarkable improvement in device power conversion efficiency from 14.6% to almost 17.8%, highlighting sustainable innovation
Vinayak Vitthal Satale   +6 more
wiley   +1 more source

Enhancing CoFe Catalysts with V2CTX MXene‐Derived Materials for Anion Exchange Membrane Electrolyzers

open access: yesAdvanced Functional Materials, EarlyView.
MXene dervied CoFe composites show increased initial Oxygen Evolution Reaction (OER) activity compared to the pure CoFe and MXene in an Anion Exchange Membrane device. Vanadium vacancies in the MXene plays a role in increased OER activity and hinders Fe leaching in the AEM device over using the pure V2C MXene as a support material for the CoFe ...
Can Kaplan   +16 more
wiley   +1 more source

Self‐supportive Three‐Way Photoelectrochemical System Achieving Uranium Recycling, Organic Oxidation, and Electricity Generation in Complex Waters

open access: yesAdvanced Functional Materials, EarlyView.
A self‐sustaining solar photoelectrochemical cell (SS‐PEC) is developed to recover uranium from aqueous UO22+ with concurrent organic oxidation and electricity production. The monolithical photoanode directly captures electrons from organic compounds, leading to the oxidation of organic compounds and the decomposition of uranium‐organic complexes ...
Yumei Wang   +7 more
wiley   +1 more source

Microplate Active Migration Emerging From Light‐Induced Phase Transitions in a Nematic Liquid Crystal

open access: yesAdvanced Functional Materials, EarlyView.
A quasi‐2D, light‐absorbing platelet embedded in a thermotropic nematic liquid crystal is activated with light irradiation. Depending on the light intensity, the platelet induces a localized nematic‐isotropic phase transition that triggers the motion. Using different confinements, the platelet can glide in a 2D regime or tilt and glide in a 3D regime ...
Antonio Tavera‐Vázquez   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy