Results 241 to 250 of about 1,051,691 (327)
Multi‐Scaled Cellulosic Nanonetworks from Tunicates
Microbial and plant nanonetworks of cellulose have enabled a wide range of high‐performance yet sustainable materials. Herein, a third class of cellulosic nanonetworks is showcased by exploiting the only animal tissue‐producing cellulose nanofibers, i.e., ascidians. An ultrastructure including spherical cells and a microvasculature with diameters of 50–
Mano Govindharaj+10 more
wiley +1 more source
A Flexible Photovoltaic Fatigue Factor for Quantification of Mechanical Device Performance
The flexible Photovoltaic fatigue factor (F) quantifies mechanical and photovoltaic performance as a function of the power conversion efficiency (PCE), the strain (ε${\varepsilon}$), and the number of bending cycles (NBC) in bending tests. The strain depends on the bending radius (R) and the thicknesses of the substrate (ts) and the photovoltaic device
Lulu Sun+8 more
wiley +1 more source
A novel stratum corneum‐inspired zwitterionic hydrogel is developed for intelligent, flexible sensors, featuring intrinsic water retention and anti‐freezing properties. The quasi‐gel, composed of hygroscopic polymers and bound water, maintains its softness across a wide range of humidity.
Meng Wu+8 more
wiley +1 more source
RADIO ELECTRONIC EQUIPMENT FAILURES MODEL
M. Yu. Zaliskyi+2 more
openaire +1 more source
Light‐Mediated Photomultiplication via Cascade Energy Transfer in Organic Photodiode
Light‐mediated photomultiplication via cascade energy transfer in organic photodiode demonstrates external quantum efficiency exceeding 200% and specific detectivity surpassing 5.0 × 1013 Jones. This advancement effectively addresses the limitation of elevated dark current density characteristic of prior photomultiplication organic photodetectors ...
Gae Hwang Lee+8 more
wiley +1 more source
Carbon Nanotube 3D Integrated Circuits: From Design to Applications
As Moore's law approaches its physical limits, carbon nanotube (CNT) 3D integrated circuits (ICs) emerge as a promising alternative due to the miniaturization, high mobility, and low power consumption. CNT 3D ICs in optoelectronics, memory, and monolithic ICs are reviewed while addressing challenges in fabrication, design, and integration.
Han‐Yang Liu+3 more
wiley +1 more source
Geometric multi‐bit patterning based on dynamic wetting and dewetting phenomena creates roulette‐like Physical Unclonable Function (PUF) labels with stochastic yet deterministic properties. This method leverages the solutal‐Marangoni effect for high randomness while achieving deterministic multinary patterns through polygonal confinement of binary ...
Yeongin Cho+8 more
wiley +1 more source
Programmable Liquid Crystal Elastomers Via Magnetic Field Assisted Oligomerization
This article presents a straightforward method for designing programmable liquid crystal elastomer (LCE) actuators using magnetic field alignment. It combines thio‐Michael polyaddition for efficient LCE synthesis with a strategy that preserves the nematic phase, enabling the alignment of high molecular weight LCOs.
Rakine Mouhoubi+2 more
wiley +1 more source
Intraoral Drug Delivery: Bridging the Gap Between Academic Research and Industrial Innovations
Intraoral drug delivery offers a promising route for systemic and localized therapies, yet challenges such as enzymatic degradation, limited permeability, and microbial interactions hinder efficacy. This figure highlights innovative strategies—mucoadhesive materials, enzyme inhibitors, and permeation enhancers—to overcome these barriers.
Soheil Haddadzadegan+4 more
wiley +1 more source
This review provides an in‐depth understanding of all theoretical reaction mechanisms to date concerning zinc–iodine batteries. It revisits the inherent issues and solutions of zinc–iodine batteries from the perspective of industrial application. By integrating existing examples of energy storage applications, it identifies the challenges faced on the ...
Haokun Wen+10 more
wiley +1 more source