Results 191 to 200 of about 556,020 (262)

Unidirectional Tape‐Based Composites from Hemp and Pineapple Leaf Fiber: Mechanical Performance in Conventional and Bio‐Based Matrices

open access: yesAdvanced Engineering Materials, EarlyView.
The study investigates novel semi‐finished products made of unidirectionally arranged hemp or pineapple leaf fiber‐reinforced composites produced from different matrices. The materials are analyzed in terms of their mechanical and interfacial properties and void content.
Nina Graupner   +22 more
wiley   +1 more source

The Spc105/Kre28 complex promotes mitotic error correction by outer kinetochore recruitment of Ipl1/Sli15. [PDF]

open access: yesEMBO J
Dudziak A   +10 more
europepmc   +2 more sources

Microstructural Evolution and Mechanical Performance of Plasma‐Assisted Hybrid Friction Stir Welded Dissimilar Aluminum–Copper Joints

open access: yesAdvanced Engineering Materials, EarlyView.
Plasma‐assisted hybrid friction stir welding of dissimilar AlCu joints employs localized plasma preheating to balance heat input and enhance plastic flow. The optimized process reduces axial force by up to 35%, refines the microstructure, and achieves ≈96% joint efficiency.
Deepak Kumar Yaduwanshi   +3 more
wiley   +1 more source

Influence of Sample Preparation and Processing Procedures on the Thermal Diffusivity of MgO‐C Refractories

open access: yesAdvanced Engineering Materials, EarlyView.
The thermal diffusivity of MgO‐C refractories is highly sensitive to sample preparation and processing procedures. In this article, the effects of coking sequence, machining conditions, structural inhomogeneity, and graphite coating application on measurements using laser flash apparatus are systematically investigated.
Luyao Pan   +4 more
wiley   +1 more source

Engineering Deformation and Failure in Diamond Triply Periodic Minimal Surface Lattices via 3D Wall‐Thickness Grading

open access: yesAdvanced Engineering Materials, EarlyView.
The work demonstrates that strategic wall‐thickness grading in diamond triply periodic minimal surface lattices enables precise tuning of deformation and failure behavior under compression. Different gradation patterns guide how and where the structure collapses, improving energy absorption or promoting controlled brittle failure.
Giovanni Rizza   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy