Results 111 to 120 of about 191,243 (258)

Defect‐Mediated Scintillation in Fully Inorganic Perovskites via Water‐Induced 0D/3D Phase Modulation

open access: yesAdvanced Functional Materials, EarlyView.
A reproducible synthesis to control 3D/0D phase ratios via water‐tuned solvent–antisolvent methods is presented. Enhanced scintillation yield and ultrafast decay are achieved. Defect‐driven emission mechanisms are revealed through cathodoluminescence and radioluminescence, shedding light on the underexplored role of the 0D Cs4PbBr6 and mixed 0D/3D ...
Mario Calora   +18 more
wiley   +1 more source

MOFs and COFs in Electronics: Bridging the Gap between Intrinsic Properties and Measured Performance

open access: yesAdvanced Functional Materials, EarlyView.
Metal‐organic frameworks (MOFs) and covalent organic frameworks (COFs) hold promise for advanced electronics. However, discrepancies in reported electrical conductivities highlight the importance of measurement methodologies. This review explores intrinsic charge transport mechanisms and extrinsic factors influencing performance, and critically ...
Jonas F. Pöhls, R. Thomas Weitz
wiley   +1 more source

Unleashing the Power of Machine Learning in Nanomedicine Formulation Development

open access: yesAdvanced Functional Materials, EarlyView.
A random forest machine learning model is able to make predictions on nanoparticle attributes of different nanomedicines (i.e. lipid nanoparticles, liposomes, or PLGA nanoparticles) based on microfluidic formulation parameters. Machine learning models are based on a database of nanoparticle formulations, and models are able to generate unique solutions
Thomas L. Moore   +7 more
wiley   +1 more source

Complex Cryptographic and User‐Centric Physically Unclonable Functions Enabled by Strain‐Sensitive Nanocrystals via Selective Ligand Exchange

open access: yesAdvanced Functional Materials, EarlyView.
This study investigates electromechanical PUFs that improve on traditional electric PUFs. The electron transport materials are coated randomly through selective ligand exchange. It produces multiple keys and a key with motion dependent on percolation and strain, and approaches almost ideal inter‐ and intra‐hamming distances.
Seungshin Lim   +7 more
wiley   +1 more source

The Realization of Multidirectional, Free‐Standing 3D Plasmonic Nanostructures via 3D Nanoprinting: A Case Study of Fractal Antennas

open access: yesAdvanced Functional Materials, EarlyView.
Free‐standing plasmonic gold‐based fractal antennas are fabricated by 3D nanoprinting, employing focused electron beam induced deposition and an optimized purification method to remove carbon while conserving structural fidelity. Simulation and experiment show broadband plasmonic activity, including customizable polarizability, thereby paving the way ...
Verena Reisecker   +6 more
wiley   +1 more source

Peptide Sequencing With Single Acid Resolution Using a Sub‐Nanometer Diameter Pore

open access: yesAdvanced Functional Materials, EarlyView.
To sequence a single molecule of Aβ1−42–sodium dodecyl sulfate (SDS), the aggregate is forced through a sub‐nanopore 0.4 nm in diameter spanning a 4.0 nm thick membrane. The figure is a visual molecular dynamics (VMD) snapshot depicting the translocation of Aβ1−42–SDS through the pore; only the peptide, the SDS, the Na+ (yellow/green) and Cl− (cyan ...
Apurba Paul   +8 more
wiley   +1 more source

Exploiting Two‐Photon Lithography, Deposition, and Processing to Realize Complex 3D Magnetic Nanostructures

open access: yesAdvanced Functional Materials, EarlyView.
Two‐photon lithography (TPL) enables 3D magnetic nanostructures with unmatched freedom in geometry and material choice. Advances in voxel control, deposition, and functionalization open pathways to artificial spin ices, racetracks, microrobots, and a number of additional technological applications.
Joseph Askey   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy