Results 241 to 250 of about 495,115 (315)
Leveraging Different Distance Functions to Predict Antiviral Peptides with Geometric Deep Learning from ESMFold-Predicted Tertiary Structures. [PDF]
Cordoves-Delgado G +4 more
europepmc +1 more source
Riemannian Geometry for the Classification of Brain States with Intracortical Brain Recordings
Geometric machine learning is applied to decode brain states from invasive intracortical neural recordings, extending Riemannian methods to the invasive regime where data is scarcer and less stationary. A Minimum Distance to Mean classifier on covariance manifolds uses geodesic distances to outperform convolutional neural networks while reducing ...
Arnau Marin‐Llobet +9 more
wiley +1 more source
BMPCQA: Bioinspired Metaverse Point Cloud Quality Assessment Based on Large Multimodal Models
This study presents a bioinspired metaverse point cloud quality assessment metric, which simulates the human visual evaluation process to perform the point cloud quality assessment task. It first extracts rendering projection video features, normal image features, and point cloud patch features, which are then fed into a large multimodal model to ...
Huiyu Duan +7 more
wiley +1 more source
Enhancing classification accuracy in medical datasets using a hybrid distance and cluster refinement-based K-means clustering method. [PDF]
Al-Khamees HAA +7 more
europepmc +1 more source
From Droplet to Diagnosis: Spatio‐Temporal Pattern Recognition in Drying Biofluids
This article integrates machine learning (ML) with the spatio‐temporal evolution of biofluid droplets to reveal how drying and self‐assembly encode distinctive compositional fingerprints. By leveraging textural features and interpretable ML, it achieves robust classification of blood abnormalities with over 95% accuracy.
Anusuya Pal +2 more
wiley +1 more source
Identifying non‐small cell lung cancer (NSCLC) subtypes is essential for precision cancer treatment. Conventional methods are laborious, or time‐consuming. To address these concerns, RPSLearner is proposed, which combines random projection and stacking ensemble learning for accurate NSCLC subtyping. RPSLearner outperforms state‐of‐the‐art approaches in
Xinchao Wu, Jieqiong Wang, Shibiao Wan
wiley +1 more source
Divergence unveils further distinct phenotypic traits of human brain connectomics fingerprint. [PDF]
Uddin MK +4 more
europepmc +1 more source
A hierarchical multimodal framework coupling a large language model for task decomposition and semantic mapping with a fine‐tuned vision‐language model for semantic perception, enhanced by GridMask, is presented. An aerial‐ground robot team exploits the semantic map for global and local planning.
Haokun Liu +6 more
wiley +1 more source

