Results 201 to 210 of about 442,430 (312)

Controlling Intestinal Organoid Polarity using Synthetic Dynamic Hydrogels Decorated with Laminin‐Derived IKVAV Peptides

open access: yesAdvanced Healthcare Materials, EarlyView.
Design rules are presented to control intestinal organoid polarity in fully synthetic hydrogels. The laminin‐derived IKVAV sequence is crucial to obtain correct intestinal organoid polarity. Increasing hydrogel dynamics further supports the growth of correctly polarized intestinal organoids, while a bulk level of stiffness (G’ ≈ 0.7 kPa) is crucial to ...
Laura Rijns   +10 more
wiley   +1 more source

Bioprinting Organs—Science or Fiction?—A Review From Students to Students

open access: yesAdvanced Healthcare Materials, EarlyView.
Bioprinting artificial organs has the potential to revolutionize the medical field. This is a comprehensive review of the bioprinting workflow delving into the latest advancements in bioinks, materials and bioprinting techniques, exploring the critical stages of tissue maturation and functionality.
Nicoletta Murenu   +18 more
wiley   +1 more source

A Novel Microfluidic System for 3D Epidermis and Full‐Thickness Skin Growth for Nanoparticle Safety Assessment

open access: yesAdvanced Healthcare Materials, EarlyView.
This work presents a novel, dynamically perfused, configurable microfluidic system for epidermis‐only (E and full‐thickness skin (FT SoC) growth, emulating human skin structure and barrier function. Upon TiO2 nanoparticle exposure, the system reveals compromised barrier integrity, reduced metabolic activity, increased permeability, and chemokine‐driven
Samantha Costa   +7 more
wiley   +1 more source

Metallofullerenol Sc3N@C80(OH)18: A New Generation Radioprotector Protecting Human Erythrocytes Against Multiple Biochemical Damage Modes Upon Gamma Irradiation, Identifying It as a Scavenger of Short‐ and Long‐Lived Radicals

open access: yesAdvanced Healthcare Materials, EarlyView.
Metallofullerenol Sc3N@C80(OH)18 demonstrates strong radioprotective properties as a scavenger of both short‐ and long‐lived radicals. The study reveals protection of human erythrocytes from γ‐radiation–induced biochemical damage via post‐irradiation removal of primary and secondary reactive oxidants, supported by pulse radiolysis kinetics.
Jacek Grebowski   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy