Results 221 to 230 of about 1,070,207 (360)

Mimicking Synaptic Plasticity: Optoionic MoS2 Memory Powered by Biopolymer Hydrogels as a Dynamic Cations Reservoir

open access: yesAdvanced Functional Materials, EarlyView.
Janus (MoS2) transistors functionalized with sodium alginate (SA) and poly(vinylidene fluoride‐co‐trifluoroethylene) [P(VDF‐TrFE)] exhibit persistent photo‐induced ionic gating, driven by dynamic cation migration at the hybrid interface. This ionic mechanism enables finely tunable photoconductivity and emulates key synaptic plasticity behaviors ...
Yeonsu Jeong   +5 more
wiley   +1 more source

Methylome-driven regulation of miRNA expression and its relationship to cardiac dysfunction in idiopathic dilated cardiomyopathy. [PDF]

open access: yesClin Epigenetics
Gallego-Martínez A   +8 more
europepmc   +1 more source

Next‐Generation Bio‐Reducible Lipids Enable Enhanced Vaccine Efficacy in Malaria and Primate Models

open access: yesAdvanced Functional Materials, EarlyView.
Structure–activity relationship (SAR) optimization of bio‐reducible ionizable lipids enables the development of highly effective lipid nanoparticle (LNP) mRNA vaccines. Lead LNPs show superior tolerability and antibody responses in rodents and primates, outperforming approved COVID‐19 vaccine lipids.
Ruben De Coen   +30 more
wiley   +1 more source

High-resolution UV spectroscopy of the chiral molecule 1-phenylethanol.

open access: yesPhys Chem Chem Phys
Yadav S   +3 more
europepmc   +1 more source

The Hierarchical Structure of Sheep Wool and Its Impact on Physical Properties

open access: yesAdvanced Functional Materials, EarlyView.
Sheep wool, a prevalent α‐keratinous fiber, is an essential model for studying protein‐based fibers. Its genetic diversity across breeds enables the establishment of multiscale structure‐property relationships, uncovering previously elusive insights into wool's hierarchical structure.
Serafina R. France Tribe   +9 more
wiley   +1 more source

Smart Nanogels as Enzyme‐Driven Nanomotors for Navigating Viscous Physiological Barriers

open access: yesAdvanced Functional Materials, EarlyView.
Two families of urease‐powered nanomotors (NMs), with and without a p‐(2‐hydroxyethyl methacrylate) (p‐HEMA) shell, have been successfully prepared. Both types exhibit effective motion in highly viscous synovial fluid media at low urea concentrations (25 mM).
David Esporrín‐Ubieto   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy