Results 71 to 80 of about 888,172 (204)

The ∞$\infty$‐categorical reflection theorem and applications

open access: yesJournal of Topology, Volume 19, Issue 1, March 2026.
Abstract We prove an ∞$\infty$‐categorical version of the reflection theorem of AdÁmek and Rosický [Arch. Math. 25 (1989), no. 1, 89–94]. Namely, that a full subcategory of a presentable ∞$\infty$‐category that is closed under limits and κ$\kappa$‐filtered colimits is a presentable ∞$\infty$‐category.
Shaul Ragimov, Tomer M. Schlank
wiley   +1 more source

Higher commutator conditions for extensions in Mal'tsev categories

open access: yes, 2018
We define a Galois structure on the category of pairs of equivalence relations in an exact Mal'tsev category, and characterize central and double central extensions in terms of higher commutator conditions.
Duvieusart, Arnaud, Gran, Marino
core   +1 more source

Equivariant Kuznetsov components for cubic fourfolds with a symplectic involution

open access: yesBulletin of the London Mathematical Society, Volume 58, Issue 2, February 2026.
Abstract We study the equivariant Kuznetsov component KuG(X)$\mathrm{Ku}_G(X)$ of a general cubic fourfold X$X$ with a symplectic involution. We show that KuG(X)$\mathrm{Ku}_G(X)$ is equivalent to the derived category Db(S)$D^b(S)$ of a K3$K3$ surface S$S$, where S$S$ is given as a component of the fixed locus of the induced symplectic action on the ...
Laure Flapan, Sarah Frei, Lisa Marquand
wiley   +1 more source

Exact sequences of tensor categories [PDF]

open access: yes, 2010
We introduce the notions of normal tensor functor and exact sequence of tensor categories. We show that exact sequences of tensor categories generalize strictly exact sequences of Hopf algebras as defined by Schneider, and in particular, exact sequences ...
Bruguières, Alain, Natale, Sonia
core  

Scissors congruence K$K$‐theory for equivariant manifolds

open access: yesBulletin of the London Mathematical Society, Volume 58, Issue 1, January 2026.
Abstract We introduce a scissors congruence K$K$‐theory spectrum that lifts the equivariant scissors congruence groups for compact G$G$‐manifolds with boundary, and we show that on π0$\pi _0$, this is the source of a spectrum‐level lift of the Burnside ring‐valued equivariant Euler characteristic of a compact G$G$‐manifold.
Mona Merling   +4 more
wiley   +1 more source

The log Grothendieck ring of varieties

open access: yesBulletin of the London Mathematical Society, Volume 58, Issue 1, January 2026.
Abstract We define a Grothendieck ring of varieties for log schemes. It is generated by one additional class “P$P$” over the usual Grothendieck ring. We show the naïve definition of log Hodge numbers does not make sense for all log schemes. We offer an alternative that does.
Andreas Gross   +4 more
wiley   +1 more source

Torsion classes of extended Dynkin quivers over commutative rings

open access: yesBulletin of the London Mathematical Society, Volume 58, Issue 1, January 2026.
Abstract For a Noetherian R$R$‐algebra Λ$\Lambda$, there is a canonical inclusion torsΛ→∏p∈SpecRtors(κ(p)Λ)$\mathop {\mathsf {tors}}\Lambda \rightarrow \prod _{\mathfrak {p}\in \operatorname{Spec}R}\mathop {\mathsf {tors}}(\kappa (\mathfrak {p})\Lambda)$, and each element in the image satisfies a certain compatibility condition.
Osamu Iyama, Yuta Kimura
wiley   +1 more source

Radical preservation and the finitistic dimension

open access: yesBulletin of the London Mathematical Society, Volume 58, Issue 1, January 2026.
Abstract We introduce the notion of radical preservation and prove that a radical‐preserving homomorphism of left artinian rings of finite projective dimension with superfluous kernel reflects the finiteness of the little finitistic, big finitistic, and global dimension.
Odysseas Giatagantzidis
wiley   +1 more source

Deligne categories and the limit of categories $Rep(GL(m|n))$

open access: yes, 2019
For each integer $t$ a tensor category $V_t$ is constructed, such that exact tensor functors $V_t \longrightarrow C$ classify dualizable $t$-dimensional objects in $C$ not annihilated by any Schur functor.
Entova-Aizenbud, Inna   +2 more
core   +1 more source

On the local Kan structure and differentiation of simplicial manifolds

open access: yesBulletin of the London Mathematical Society, Volume 58, Issue 1, January 2026.
Abstract We prove that arbitrary simplicial manifolds satisfy Kan conditions in a suitable local sense. This allows us to expand a technique for differentiating higher Lie groupoids worked out in [8] to the setting of general simplicial manifolds. Consequently, we derive a method to differentiate simplicial manifolds into higher Lie algebroids.
Florian Dorsch
wiley   +1 more source

Home - About - Disclaimer - Privacy