Results 81 to 90 of about 888,172 (204)
Profinite direct sums with applications to profinite groups of type ΦR$\Phi _R$
Abstract We show that the ‘profinite direct sum’ is a good notion of infinite direct sums for profinite modules, having properties similar to those of direct sums of abstract modules. For example, the profinite direct sum of projective modules is projective, and there is a Mackey's formula for profinite modules described using these sums.
Jiacheng Tang
wiley +1 more source
Hinich's model for Day convolution revisited
Abstract We prove that Hinich's construction of the Day convolution operad of two O$\mathcal {O}$‐monoidal ∞$\infty$‐categories is an exponential in the ∞$\infty$‐category of ∞$\infty$‐operads over O$\mathcal {O}$, and use this to give an explicit description of the formation of algebras in the Day convolution operad as a bivariant functor.
Christoph Winges
wiley +1 more source
Module structure of Weyl algebras
Abstract The seminal paper (Stafford, J. Lond. Math. Soc. (2) 18 (1978), no. 3, 429–442) was a major step forward in our understanding of Weyl algebras. Beginning with Serre's Theorem on free summands of projective modules and Bass' Stable Range Theorem in commutative algebra, we attempt to trace the origins of this work and explain how it led to ...
Gwyn Bellamy
wiley +1 more source
b‐Filter Grade of an Ideal a for Triangulated Categories
Let a and b be two homogeneous ideals in a graded‐commutative Noetherian ring R, and let X be an object in a compactly generated R‐linear triangulated category T. We introduce the notion of the b‐filter grade of a on X, denoted by f‐gradb,a,X, and provide several characterizations and bounds for this invariant. In addition, we explore the relationships
Li Wang +4 more
wiley +1 more source
On the principle of linearized stability for quasilinear evolution equations in time‐weighted spaces
Abstract Quasilinear (and semilinear) parabolic problems of the form v′=A(v)v+f(v)$v^{\prime }=A(v)v+f(v)$ with strict inclusion dom(f)⊊dom(A)$\mathrm{dom}(f)\subsetneq \mathrm{dom}(A)$ of the domains of the function v↦f(v)$v\mapsto f(v)$ and the quasilinear part v↦A(v)$v\mapsto A(v)$ are considered in the framework of time‐weighted function spaces ...
Bogdan‐Vasile Matioc +2 more
wiley +1 more source
Exactness of homotopy functors of spaces
This paper studies \(n\)-exact functors of spaces and analyzes generalizations of two classical spectral sequences for such functors. The author defines an \(n\)-exact functor to be an endofunctor of the category of finite pointed \(CW\)-complexes and basepoint-preserving cellular maps that takes strongly co-Cartesian \((n+1)\)-cubical diagrams of ...
openaire +2 more sources
Explicit constructions of short virtual resolutions of truncations
Abstract We propose a concept of truncation for arbitrary smooth projective toric varieties and construct explicit cellular resolutions for nef truncations of their total coordinate rings. We show that these resolutions agree with the short resolutions of Hanlon, Hicks, and Lazarev, which were motivated by symplectic geometry, and we use our definition
Lauren Cranton Heller
wiley +1 more source
A note on the cohomology of moduli spaces of local shtukas
Abstract We study localized versions of spectral action of Fargues–Scholze, using methods from higher algebra. As our main motivation and application, we deduce a formula for the cohomology of moduli spaces of local shtukas under certain genericity assumptions, and discuss its relation with the Kottwitz conjecture.
David Hansen, Christian Johansson
wiley +1 more source
$t$-Structures for Relative $\mathcal{D}$-Modules and $t$-Exactness of the de Rham Functor [PDF]
Luisa Fiorot +1 more
openalex +2 more sources
Approximation of subcategories by abelian subcategories
Let $\mathcal{C}$ be an abelian category and let $\Lambda : \mathcal{C}\rightarrow\mathcal{C}$ be an idempotent functor which is not right exact, so that the zeroth left derived functor $L_0\Lambda$ does not necessarily coincide with $\Lambda$.
Salch, Andrew
core

