Results 311 to 320 of about 630,752 (343)
Some of the next articles are maybe not open access.
Siberian Mathematical Journal, 2013
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
JABARA, Enrico, D. V. Lytkina
openaire +2 more sources
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
JABARA, Enrico, D. V. Lytkina
openaire +2 more sources
The Noether exponent and the Łojasiewicz exponent. II
La notation est celle de l'article précédent [ibid., No.11, 16 p. (1986; voir l'article précédent)], avec en outre \(| z| =\sup (| x|,| y|)\) pour \(z=(x,y)\). L'exposant de Łojasiewicz \(\lambda\) (h) de l'application \(h=(f,g)\) est le plus petit \(\lambda \in {\mathbb{R}}_+\) tel que \(| z|^{\lambda}/| h(z)|\) ait une \(\limsup\) finie quand \(z\to ...Chądzyński, Jacek, Krasiński, Tadeusz
openaire +2 more sources
Algebra and Logic, 2011
Let \(G\) be a periodic group. The `spectrum' of \(G\) is the set \(\varpi(G)\) of the orders of elements of \(G\); \(G\) is said to be in the class \(\mathcal P_n\) if \(\varpi(G)=\{2^i\mid i=0,1,\dots,n\}\cup\{3\}\). The main result of the paper under review is Theorem 1 which asserts that groups in \(\mathcal P_3\) are locally finite (it was ...
openaire +2 more sources
Let \(G\) be a periodic group. The `spectrum' of \(G\) is the set \(\varpi(G)\) of the orders of elements of \(G\); \(G\) is said to be in the class \(\mathcal P_n\) if \(\varpi(G)=\{2^i\mid i=0,1,\dots,n\}\cup\{3\}\). The main result of the paper under review is Theorem 1 which asserts that groups in \(\mathcal P_3\) are locally finite (it was ...
openaire +2 more sources
Kibble-Zurek exponent and chiral transition of the period-4 phase of Rydberg chains
Nature Communications, 2021Natalia Chepiga, Frederic Mila
exaly

