Results 101 to 110 of about 39,512 (228)

Interpolation for entire functions of exponential type and a related trigonometric moment problem [PDF]

open access: yesProceedings of the American Mathematical Society, 1976
A classical theorem of Hausdorff-Young shows that when 1 > p > 2 1 > p > 2 , the system of equations φ ^ ( n ) = c n ( − ∞ >
openaire   +2 more sources

Exact traveling wave solutions to the (3+1)-dimensional mKdV–ZK and the (2+1)-dimensional Burgers equations via exp(−Φ(η))-expansion method

open access: yesAlexandria Engineering Journal, 2015
In this work, the exact traveling wave solutions to the (3+1)-dimensional mKdV–ZK equation and the (2+1)-dimensional Burgers equation are studied using the exp(-Φ(η))-expansion method.
Md. Nur Alam   +3 more
doaj   +1 more source

ON THE INEQUALITIES CONCERNING POLYNOMIAL-EXPONENTIAL BOUNDS FOR INVERSE TRIGONOMETRIC FUNCTION

open access: yesInternational journal of innovations in engineering research and technology
Recent research works on mathematical inequalities shows the importance bounds of polynomial-exponential type for various functions.
M. Ramkrishna   +3 more
semanticscholar   +1 more source

Bicomplex Numbers and their Elementary Functions</a> </p><span class="r_subtitle"><img src="/img/openaccess.ico" alt="open access: yes" title="open access: yes" width="16" height="16"><i>Cubo</i>, 2012 </span><br><span class="r_content">En este artículo introducimos el algebra de números bicomplejos como una generalizacion del campo de números complejos. Describimos como definir funciones elementales en tales algebras (polinomios y funciones exponenciales y trigonometricas) así como sus </span><br><span class="r_sub"><i>M.E LUNA-ELIZARRARÁS<span id="ma_4" style="display:none">, M SHAPIRO, D.C STRUPPA, A VAJIAC</span>   <small><a href="#" style="color:#808080;" onClick="return toggle_div(this, 'ma_4')">+3 more</a></small></i></span><br><small><a href="https://doaj.org/article/08a611fe6d0e4a16a3ca5e2214e2ff55" target="_blank" rel="nofollow" title="doaj.org/article/08a611fe6d0e4a16a3ca5e2214e2ff55">doaj</a> </small>   <br></div><div class="r"><p class="r_title"><a href="https://doi.org/10.29169/1927-5129.2025.21.08" target="_blank" rel="nofollow">A Study on Fractional Integral Inequalities for Trigonometric and Exponential Trigonometric-convex Functions</a> </p><span class="r_subtitle"><img src="/img/openaccess.ico" alt="open access: yes" title="open access: yes" width="16" height="16"><i>Journal of Basic & Applied Sciences</i></span><br><span class="r_content">Inequalities involving fractional operators have also been an active area of research. These inequalities play a crucial role in establishing bounds, estimates, and stability conditions for solutions to fractional integrals. In this paper, firstly we establish these new identities for the case of twice differentiable functions and Caputo-Fabrizio ...</span><br><span class="r_sub"><i>HEZENCİ, FATİH<span id="ma_5" style="display:none">, Shumin, Li, Munir, Arslan, Kara, Hasan, BUDAK, HÜSEYİN</span>   <small><a href="#" style="color:#808080;" onClick="return toggle_div(this, 'ma_5')">+4 more</a></small></i></span><br><small><a href="https://explore.openaire.eu/search/publication?pid=10.29169%2F1927-5129.2025.21.08" target="_blank" rel="nofollow" title="openaire.eu/search/publication?pid=10.29169%2F1927-5129.2025.21.08">openaire</a> </small>   <div id="more_5" style="display:none"><a href="/sci_redir.php?doi=10.29169%2F1927-5129.2025.21.08" target="_blank" rel="nofollow">openaccessbutton.org (pdf)</a><br><a href="https://avesis.kocaeli.edu.tr/publication/details/22f92d9e-c66d-41a5-a969-61fe01152bb8/oai" target="_blank" rel="nofollow" title="avesis.kocaeli.edu.tr/publication/details/22f92d9e-c66d-41a5-a969-61fe01152bb8/oai">avesis.kocaeli.edu.tr</a><br> <a href="javascript:navigator.clipboard.writeText('10.29169/1927-5129.2025.21.08'); alert('Copied the doi');">copy doi</a> <small>(10.29169/1927-5129.2025.21.08)</small><br></div><small><a href="#" onClick="return toggle_div(this, 'more_5')">+2 more sources</a></small><br></div><div class="r"><p class="r_title"><a href="http://arxiv.org/abs/1710.00674" target="_blank" rel="nofollow">Solving 1ODEs with functions</a> </p><span class="r_subtitle"><img src="/img/openaccess.ico" alt="open access: yes" title="open access: yes" width="16" height="16">, 2017 </span><br><span class="r_content">Here we present a new approach to deal with first order ordinary differential equations (1ODEs), presenting functions. This method is an alternative to the one we have presented in [1]. In [2], we have establish the theoretical background to deal, in the </span><br><span class="r_sub"><i>da Mota, L. A. C. P.<span id="ma_6" style="display:none">, Duarte, L. G. S., Queiroz, A. B. M. M.</span>   <small><a href="#" style="color:#808080;" onClick="return toggle_div(this, 'ma_6')">+2 more</a></small></i></span><br><small><a href="https://core.ac.uk/works/44614710" target="_blank" rel="nofollow" title="core.ac.uk/works/44614710">core</a> </small>   <br></div><div class="r"><p class="r_title"><a href="https://doi.org/10.3389/fams.2025.1568834" target="_blank" rel="nofollow">New analytical wave solutions of fractional order DMBBM and Bateman-Burgers equations</a> </p><span class="r_subtitle"><img src="/img/openaccess.ico" alt="open access: yes" title="open access: yes" width="16" height="16"><i>Frontiers in Applied Mathematics and Statistics</i></span><br><span class="r_content">The purpose of this article is to explore a new method for solving one of the nonlinear partial differential equations (NPDE) which is difficult to solve.</span><br><span class="r_sub"><i>Nathanon Sribua-Iam<span id="ma_7" style="display:none">, Settapat Chinviriyasit</span>   <small><a href="#" style="color:#808080;" onClick="return toggle_div(this, 'ma_7')">+1 more</a></small></i></span><br><small><a href="https://doaj.org/article/9b9ee7e46437494fbad69dedba43989f" target="_blank" rel="nofollow" title="doaj.org/article/9b9ee7e46437494fbad69dedba43989f">doaj</a> </small>   <div id="more_7" style="display:none"><a href="/sci_redir.php?doi=10.3389%2Ffams.2025.1568834" target="_blank" rel="nofollow">openaccessbutton.org (pdf)</a><br><a href="javascript:navigator.clipboard.writeText('10.3389/fams.2025.1568834'); alert('Copied the doi');">copy doi</a> <small>(10.3389/fams.2025.1568834)</small><br></div><small><a href="#" onClick="return toggle_div(this, 'more_7')">+1 more source</a></small><br></div><div class="r"><p class="r_title"><a href="https://doi.org/10.35316/alifmatika.2025.v7i1.1-33" target="_blank" rel="nofollow">Beyond circular trigonometry: Parabolic functions from geometric identities</a> </p><span class="r_subtitle"><img src="/img/openaccess.ico" alt="open access: yes" title="open access: yes" width="16" height="16"><i>Alifmatika</i></span><br><span class="r_content">This paper presents an innovative extension of trigonometric functions to parabolic geometry, introducing the parabolic sine (sinp u) and parabolic cosine (cosp u) functions.</span><br><span class="r_sub"><i>Laith H. M. Al-ossmi</i></span><br><small><a href="https://doaj.org/article/4eb5ba86a7764d53afb165063f512520" target="_blank" rel="nofollow" title="doaj.org/article/4eb5ba86a7764d53afb165063f512520">doaj</a> </small>   <div id="more_8" style="display:none"><a href="/sci_redir.php?doi=10.35316%2Falifmatika.2025.v7i1.1-33" target="_blank" rel="nofollow">openaccessbutton.org (pdf)</a><br><a href="javascript:navigator.clipboard.writeText('10.35316/alifmatika.2025.v7i1.1-33'); alert('Copied the doi');">copy doi</a> <small>(10.35316/alifmatika.2025.v7i1.1-33)</small><br></div><small><a href="#" onClick="return toggle_div(this, 'more_8')">+1 more source</a></small><br></div><div class="r"><p class="r_title"><a href="https://doi.org/10.14744/sigma.2021.00072" target="_blank" rel="nofollow">New inequalities of hermite-hadamard type for functions whose second derivatives absolute values are exponential trigonometric convex</a> </p><span class="r_subtitle"><img src="/img/openaccess.ico" alt="open access: yes" title="open access: yes" width="16" height="16"><i>Sigma Journal of Engineering and Natural Sciences</i>, 2022 </span><br><span class="r_sub"><i>Şenol Demir</i></span><br><small><a href="https://www.semanticscholar.org/paper/d3e14def552db197f20a04a67aef8560c00daa1e" target="_blank" rel="nofollow" title="semanticscholar.org/paper/d3e14def552db197f20a04a67aef8560c00daa1e">semanticscholar</a> </small>   <div id="more_9" style="display:none"><a href="/sci_redir.php?doi=10.14744%2Fsigma.2021.00072" target="_blank" rel="nofollow">openaccessbutton.org (pdf)</a><br><a href="javascript:navigator.clipboard.writeText('10.14744/sigma.2021.00072'); alert('Copied the doi');">copy doi</a> <small>(10.14744/sigma.2021.00072)</small><br></div><small><a href="#" onClick="return toggle_div(this, 'more_9')">+1 more source</a></small><br></div><div class="r"><p class="r_title"><a href="https://doi.org/10.1016/j.asej.2025.103395" target="_blank" rel="nofollow">Exploring soliton dynamics and wave interactions in an extended Kadomtsev-Petviashvili-Boussinesq equation</a> </p><span class="r_subtitle"><img src="/img/openaccess.ico" alt="open access: yes" title="open access: yes" width="16" height="16"><i>Ain Shams Engineering Journal</i></span><br><span class="r_content">This research investigates the extended Kadomtsev-Petviashvili-Boussinesq equation, relevant in numerous scenarios involving dissipative media. To initiate the analysis, a Hirota bilinear form is applied, leading to a Bäcklund transformation for the ...</span><br><span class="r_sub"><i>Nauman Raza<span id="ma_10" style="display:none">, Adil Jhangeer, Zeeshan Amjad, Beenish Rani, Dumitru Baleanu</span>   <small><a href="#" style="color:#808080;" onClick="return toggle_div(this, 'ma_10')">+4 more</a></small></i></span><br><small><a href="https://doaj.org/article/eee5df8ef27d4ad08e945533c47490dd" target="_blank" rel="nofollow" title="doaj.org/article/eee5df8ef27d4ad08e945533c47490dd">doaj</a> </small>   <div id="more_10" style="display:none"><a href="/sci_redir.php?doi=10.1016%2Fj.asej.2025.103395" target="_blank" rel="nofollow">openaccessbutton.org (pdf)</a><br><a href="javascript:navigator.clipboard.writeText('10.1016/j.asej.2025.103395'); alert('Copied the doi');">copy doi</a> <small>(10.1016/j.asej.2025.103395)</small><br></div><small><a href="#" onClick="return toggle_div(this, 'more_10')">+1 more source</a></small><br></div><div class="r"><div style="margin-bottom:2px;overflow:hidden"><div style="display: inline-block; float: left; font-size: small; padding-right: 16px; margin-top: -1px; padding-bottom: 1px;"><a href="/q-mathematics/" class="suggestion"onclick="show_loader();"><b>mathematics</b></a><br/><a href="/q-computer_science/" class="suggestion"onclick="show_loader();"><b>computer science</b></a><br/><a href="/q-physics/" class="suggestion"onclick="show_loader();"><b>physics</b></a><br/></div><div style="display: inline-block; float: left; font-size: small; padding-right: 16px; margin-top: -1px; padding-bottom: 1px;"><a href="/q-engineering/" class="suggestion"onclick="show_loader();"><b>engineering</b></a><br/><a href="/q-laplace_transform/" class="suggestion"onclick="show_loader();"><b>laplace transform</b></a><br/><a href="/q-medicine/" class="suggestion"onclick="show_loader();"><b>medicine</b></a><br/></div><div style="display: inline-block; float: left; font-size: small; padding-right: 16px; margin-top: -1px; padding-bottom: 1px;"><a href="/q-rational_approximation/" class="suggestion"onclick="show_loader();"><b>rational approximation</b></a><br/><a href="/q-numerical_inversion/" class="suggestion"onclick="show_loader();"><b>numerical inversion</b></a><br/><a href="/q-soliton_solutions/" class="suggestion"onclick="show_loader();"><b>soliton solutions</b></a><br/></div></div></div><div class="pagenav"><a href="/q-exponential_and_trigonometric_functions/p-10/" rel="nofollow"><b>previous</b></a>   <a href="/q-exponential_and_trigonometric_functions/p-9/" rel="nofollow">9</a>  <a href="/q-exponential_and_trigonometric_functions/p-10/" rel="nofollow">10</a>  <b>11</b>  <a href="/q-exponential_and_trigonometric_functions/p-12/" rel="nofollow">12</a>  <a href="/q-exponential_and_trigonometric_functions/p-13/" rel="nofollow">13</a>   <a href="/q-exponential_and_trigonometric_functions/p-12/" id="next" rel="nofollow"><b>next</b></a> </div><br></div> </div> <script>document.getElementById('loadingGif').style.display='none';</script><div style="width: 100%; height: 40px; bottom: 0px; background-color: #f5f5f5;"><div style="padding-left: 15px; padding-top: 10px"> <a href="/" rel="nofollow">Home</a> - <a href="/page-about/" rel="nofollow">About</a> - <a href="/page-disclaimer/" rel="nofollow">Disclaimer</a> - <a href="/page-privacy/" rel="nofollow">Privacy</a> </div></div> <link rel="stylesheet" href="//ajax.googleapis.com/ajax/libs/jqueryui/1.11.4/themes/smoothness/jquery-ui.min.css"/> </body> </html>