Results 81 to 90 of about 25,547 (250)
Triboelectric nanogenerators are vital for sustainable energy in future technologies such as wearables, implants, AI, ML, sensors and medical systems. This review highlights improved TENG neuromorphic devices with higher energy output, better stability, reduced power demands, scalable designs and lower costs.
Ruthran Rameshkumar +2 more
wiley +1 more source
Abstract Futures markets are critical to price discovery and often dominate spot markets. We analyze the linkages between daily corn futures and spot prices in the United States using dynamic time warping. This nonparametric pattern recognition technique has several advantages over traditional time series methods.
Dragan Miljkovic +2 more
wiley +1 more source
Designing Memristive Materials for Artificial Dynamic Intelligence
Key characteristics required of memristors for realizing next‐generation computing, along with modeling approaches employed to analyze their underlying mechanisms. These modeling techniques span from the atomic scale to the array scale and cover temporal scales ranging from picoseconds to microseconds. Hardware architectures inspired by neural networks
Youngmin Kim, Ho Won Jang
wiley +1 more source
Inverse Engineering of Mg Alloys Using Guided Oversampling and Semi‐Supervised Learning
End‐to‐end design of engineering materials such as Mg alloys must include the properties, structure, and post‐synthesis processing methods. However, this is challenging when destructive mechanical testing is needed to annotate unseen data, and the processing methods for hypothetical alloys are unknown.
Amanda S. Barnard
wiley +1 more source
Information and Divergence Measures. [PDF]
Karagrigoriou A, Makrides A.
europepmc +1 more source
We investigate MACE‐MP‐0 and M3GNet, two general‐purpose machine learning potentials, in materials discovery and find that both generally yield reliable predictions. At the same time, both potentials show a bias towards overstabilizing high energy metastable states. We deduce a metric to quantify when these potentials are safe to use.
Konstantin S. Jakob +2 more
wiley +1 more source
Hardware acceleration of number theoretic transform for zk‐SNARK
An FPGA‐based hardware accelerator with a multi‐level pipeline is designed to support the large‐bitwidth and large‐scale NTT tasks in zk‐SNARK. It can be flexibly scaled to different scales of FPGAs and has been equipped in the heterogeneous acceleration system with the help of HLS and OpenCL.
Haixu Zhao +6 more
wiley +1 more source
On several extremal problems in graph theory involving gromov hyperbolicity constant
Mención Internacional en el título de doctor In this Thesis we study the extremal problems of maximazing and minimazing the hyperbolicity constant on several families of graphs. In order to properly raise our research problem, we need to introduce some important definitions and make some remarks on the graphs we study.
openaire +3 more sources
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley +1 more source
This work presents a novel generative artificial intelligence (AI) framework for inverse alloy design through operations (optimization and diffusion) within learned compact latent space from variational autoencoder (VAE). The proposed work addresses challenges of limited data, nonuniqueness solutions, and high‐dimensional spaces.
Mohammad Abu‐Mualla +4 more
wiley +1 more source

