Results 231 to 240 of about 1,115,854 (295)

A Wireless Cortical Surface Implant for Diagnosing and Alleviating Parkinson's Disease Symptoms in Freely Moving Animals

open access: yesAdvanced Healthcare Materials, EarlyView.
A wireless cortical surface implant employing graphene electrode arrays diagnoses and alleviates Parkinson's disease symptoms in freely moving animals. The device continuously monitors cortical activity and delivers targeted stimulation, restoring beta–gamma and delta oscillations.
Hongseong Shin   +15 more
wiley   +1 more source

Advanced Oral Delivery Systems for Nutraceuticals

open access: yesAdvanced Healthcare Materials, EarlyView.
Emerging delivery technologies are explored to overcome barriers to oral nutraceutical absorption. Traditional carriers are compared with novel platforms including biodegradable polymers, MOFs, MPNs, and 3D printing. These systems enhance bioavailability, control release, and enable personalized nutrition.
Xin Yang   +4 more
wiley   +1 more source

Carbon‐Based Flexible Electrode for Efficient Electrochemical Generation of Reactive Chlorine Species in Tumor Therapy

open access: yesAdvanced Healthcare Materials, EarlyView.
A flexible electrode loaded with a carbon nanowire network (CC@C‐NWN) is developed for electrochemically generating reactive chlorine species (RCS) from abundant chloride ions in body fluids for tumor therapy. CC@C‐NWN enhances chlorine evolution, inducing redox dysregulation and synergistic apoptosis‐ferroptosis in tumor cells.
Cuinan Jiang   +10 more
wiley   +1 more source

Magnetic‐Driven Torque‐Induced Electrical Stimulation for Millisecond‐Scale Wireless Neuromodulation

open access: yesAdvanced Healthcare Materials, EarlyView.
MagTIES is a wireless neuromodulation technique with millisecond precision. It employs magnetic‐driven torque from magnetite nanodiscs to activate piezoelectric nanoparticles, enabling precise temporal control of neuronal activity and brain oscillations using weak, low‐frequency magnetic fields.
Chao‐Chun Cheng   +5 more
wiley   +1 more source

Multifunctional Neural Probes Enable Bidirectional Electrical, Optical, and Chemical Recording and Stimulation In Vivo

open access: yesAdvanced Materials, EarlyView.
Convergence drawing is used to create flexible, microscale, multifunctional fiber‐based neural probes. Optimized materials selection enables individual devices to perform neural recording, electrical stimulation, optogenetics, fiber photometry, fluid delivery, and voltammetric neurotransmitter detection in rodents.
Nicolette Driscoll   +16 more
wiley   +1 more source

Structural Control of Photoconductivity in a Flexible Titanium‐Organic Framework

open access: yesAdvanced Materials, EarlyView.
The concept of flexibility is extended to titanium frameworks and use it to gain control over charge transport. MUV‐35 is a flexible doubly interpenetrated framework that can shrink spontaneously its volume by ≈40% to afford a photoconductive, porous state that is thermodynamically favored by non‐covalent interactions. Abstract The soft nature of Metal‐
Clara Chinchilla‐Garzón   +6 more
wiley   +1 more source

Advancing Metal–Organic Framework‐Based Composites for Effective Chemical Warfare Agent Detoxification under Real‐World Conditions

open access: yesAdvanced Materials, EarlyView.
This review describes recent developments in the design and synthesis of metal–organic frameworks (MOF)/textile composites for the detoxification of chemical warfare agent and simulants with extensive discussion on the advantages and disadvantages of different methods.
Zhihua Cheng   +4 more
wiley   +1 more source

Conductive Polymer Coatings Control Reaction Selectivity in All‐Iron Redox Flow Batteries

open access: yesAdvanced Materials, EarlyView.
Aqueous redox flow batteries are limited by the competing hydrogen evolution reaction (HER) at their negative electrodes. In this work, conductive polymers are conformally coated on porous carbonaceous electrodes to improve the reaction selectivity of hybrid all‐iron redox flow batteries.
Emre B. Boz   +3 more
wiley   +1 more source

Advancements in Understanding the Physicochemical Properties of Reticular Materials: An In Situ and Operando Spectroscopic Perspective

open access: yesAdvanced Materials, EarlyView.
This review explores how in situ and operando spectroscopic techniques reveal the real‐time behavior of reticular materials, including MOFs and COFs. These methods track material formation and functionalization, structural changes, defect formation, dynamic responses to external triggers, and catalytic processes.
Bettina Baumgartner   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy