Results 41 to 50 of about 99 (99)

Direct Consolidation of Copper–Graphene Composite by Rotary Swaging

open access: yesAdvanced Engineering Materials, EarlyView.
The applicability of the rotary swaging method for preparation of electroconductive copper–graphene composite by direct consolidation of powders is proven. The consolidated material features advantageous microstructure featuring fine grains and twins, with homogeneous distribution of graphene, primarily along the twin boundaries, which contribute to ...
Radim Kocich   +2 more
wiley   +1 more source

Investigation of Solid‐Solution Phase Formation in AlCuNiSi Medium Entropy Alloys and its Effect on Microstructural, Thermal, and Microhardness Properties

open access: yesAdvanced Engineering Materials, EarlyView.
This study focuses on synthesizing equiatomic AlCuNiSi medium‐entropy alloys using mechanical alloying for advanced industrial applications. Continuous milling leads to grain refinement and the formation of stable BCC/FCC solid‐solution phases, resulting in enhanced mechanical properties. A unique Si‐rich solid‐solution phase is observed, which did not
Mustafa Okumuş   +2 more
wiley   +1 more source

A Study on Thermal Expansion and Thermomechanical Behavior of Composite Metal Foams

open access: yesAdvanced Engineering Materials, EarlyView.
The coefficient of thermal expansion of steel–steel composite metal foam (S‐S CMF) is shown to be lower than that of bulk stainless steel while its performance under compression demonstrate excellent mechanical stability and strength at all temperatures with gradualsoftening from 400 to 600 °C.
Zubin Chacko   +2 more
wiley   +1 more source

Geometry‐Based Scan Curve Analysis: Rapid Method for the Evaluation of Scan Strategies in Powder Bed Fusion

open access: yesAdvanced Engineering Materials, EarlyView.
This study presents rapid evaluation methods for scan strategies in powder bed fusion (PBF) of polymers with a NIR laser as an example for its application. It uses line buffer‐based calculations and point density fields to predict the performance of four different scan strategies. The methods show promising results in laser‐based PBF of polymer samples,
Simon Leupold   +9 more
wiley   +1 more source

Laser Additive Manufacturing of Oxide‐Dispersion‐Strengthened Steels: A Simulation‐Based Comparison Between Powder Bed Fusion and Direct Energy Deposition

open access: yesAdvanced Engineering Materials, EarlyView.
Controlling the size and distribution of dispersoids is essential for optimizing the performance of oxide‐dispersion‐strengthened steels. This study focuses on nanoparticle dispersion and agglomeration during laser additive manufacturing of Fe20Cr alloy reinforced with ZrO 2 nanoparticles. Utilizing multiphysics phase‐field simulations and nanoparticle
Somnath Bharech   +6 more
wiley   +1 more source

Impacts of Device Geometry and Layout on Temperature Profile during Large‐Area Photonic Curing

open access: yesAdvanced Engineering Materials, EarlyView.
The study investigates how gate geometry affects peak curing temperature during photonic curing of solution‐processed indium zinc oxide thin‐film transistors. Using 3D simulations and experimental validation, it reveals that larger gate areas and smaller aspect ratios increase curing temperature and thus improve transistor performance. Findings provide
Yasir Fatha Abed   +3 more
wiley   +1 more source

Microstructure, Mechanical Properties, and Antibacterial Performance of Novel Fe‐Mn‐Zn Nanocrystalline Alloys Produced by Mechanical Alloying

open access: yesAdvanced Engineering Materials, EarlyView.
This article presents the development of Fe‐Mn‐Zn nanocrystalline alloys (0–9 wt% Zn) by mechanical alloying and subsequently hot pressing. Their microstructure, density, hardness, wear resistance, corrosion behavior, and antibacterial properties are systematically examined.
Ilker Emin Dag   +3 more
wiley   +1 more source

Fractographic Analysis and Fatigue Behavior of Additively Manufactured Ni‐Superalloy Components with Post Processing Heat Treatment and Hot Isostatic Pressing

open access: yesAdvanced Engineering Materials, EarlyView.
A study of mechanical properties and fractography of PBF‐LB/M‐built Inconel 718, performing heat treatments and hot‐isostatic pressing, is presented. Ultimate tensile strength and fatigue behavior are evaluated, examining differences in maximum load behavior, elongation, and regimes of fatigue.
David Sommer   +3 more
wiley   +1 more source

Enhanced Mechanical Properties of Injectable Chitosan–Guar Gum Hydrogel Reinforced with Bacterial Cellulose Nanofibers for Tissue Engineering Applications

open access: yesAdvanced Engineering Materials, EarlyView.
This study presents the development and characterization of injectable nanocomposite hydrogels based on N‐succinyl chitosan, oxidized guar gum, and bacterial cellulose nanofibers. Emphasizing enhanced mechanical properties and biocompatibility, the hydrogels exhibit fast gelation, improved structural integrity, and reduced swelling. Their potential for
Raimundo Nonato Fernandes Moreira Filho   +8 more
wiley   +1 more source

Shape Memory Polymer‐Based Hook‐and‐Loop Fastener for Robust Bonding and on‐Demand Easy Separation

open access: yesAdvanced Engineering Materials, EarlyView.
A 3D shape memory polymer‐based hook‐and‐loop fastener, fabricated using projection microstereolithography and molding, offers tunable bonding strength through temperature control. When heated from 25 to 70 °C, the fastener softens and deforms easily, reducing bonding strength by 20‐fold for on‐demand easy separation.
Chen Yang   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy