Results 201 to 210 of about 584,919 (306)

Emotion Recognition in Speech Processing using Fast Fourier Transform

open access: diamond, 2019
Veerendra Kumar Jammula   +3 more
openalex   +1 more source

Bioinspired Bromination Enables Extensible, Strain‐Stiffening Resilin Peptide Scaffolds with Tunable Degradation

open access: yesAdvanced Functional Materials, EarlyView.
Bioinspired bromination of a resilin‐derived peptide enables the fabrication of electrospun nanofibrous scaffolds that uniquely combine strain‐stiffening elasticity, proteolytic stability, and antioxidant functionality. These brominated peptide–gelatin hybrids mimic the extensibility of natural elastomers, demonstrating tunable mechanical resilience ...
Elisa Marelli   +6 more
wiley   +1 more source

4D Mapping of ZIF Biocomposites for High Protein Loading and Tunable Release Profiles

open access: yesAdvanced Functional Materials, EarlyView.
Systematic four‐dimensional mapping of zeolitic imidazolate framework biocomposites reveals how precursor ratios, total concentration, and washing define crystalline phase, protein loading, and release kinetics. This comprehensive study identifies conditions yielding record loading (∼85%) and precise phase–property correlations.
Michael R. Hafner   +12 more
wiley   +1 more source

Naturally Derived Donor‐π‐Acceptor Compounds for Efficient Long‐Wavelength LEDs/Sunlight‐Induced Polymerization and High‐Precision Multiple 3D Printing

open access: yesAdvanced Functional Materials, EarlyView.
Two novel donor–π–acceptor photoinitiators enable ultrafast long‐wavelength photopolymerization under blue/green LEDs and sunlight. Effective at low intensities and concentrations, they overcome slow kinetics and permit rapid 3D printing via DLW, DLP, and LCD methods.
Ji Feng   +9 more
wiley   +1 more source

Accelerating the Nonuniform Fast Fourier Transform

open access: yesSIAM Review, 2004
L. Greengard, June-Yub Lee
semanticscholar   +1 more source

‘Oxygen Bound to Magnesium’ as High Voltage Redox Center Causes Sloping of the Potential Profile in Mg‐Doped Layered Oxides for Na‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Na‐ion batteries ‐ Impact of doping on the oxygen redox: The sloping potential of NaMg0.1Ni0.4Mn0.5O2 above 4.0 V is caused by a new redox center (arising from the ‘O bound to Mg’), having a higher potential but being more irreversible compared to the ‘O bound to Ni’.
Yongchun Li   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy