Results 131 to 140 of about 6,961 (238)

Beyond Imperfect Match: Silicon/Graphite Hybrid Anodes for High‐Energy–Density Lithium‐Ion Batteries

open access: yesAdvanced Energy Materials, EarlyView.
Silicon/graphite (Si/Gr) hybrid anodes are limited by Si's large volume change and mismatch with Gr. This review offers mechanistic insights into imperfectly matched Si/Gr hybrid anodes, elucidating heterogeneous lithiation behavior and interfacial failure pathways, and thereby informing the design of durable, high‐energy–density lithium‐ion batteries.
Jing Li   +6 more
wiley   +1 more source

Interface Stabilization via In Situ Lithiated Sn Interlayer in All‐Solid‐State Li‐Metal Batteries: Toward Pellet‐Type Cell to Pouch‐Type Cell

open access: yesAdvanced Energy Materials, EarlyView.
An in situ lithiated Sn interlayer forms a stable, lithiophilic, and conductive interface that enables durable and scalable pouch‐type all‐solid‐state lithium metal batteries under low pressure. ABSTRACT All‐solid‐state batteries (ASSBs) are among the most promising candidates for next‐generation energy storage due to their high energy density and ...
Garam Kim   +14 more
wiley   +1 more source

Impact of Discharging Methods on Electrode Integrity in Recycling of Lithium‐Ion Batteries

open access: yesAdvanced Energy Materials, EarlyView.
Electrical and electrochemical discharge methods for end‐of‐life lithium‐ion batteries are compared. Electrochemical discharge better preserves the composition and layered structure of Ni‐rich cathode materials while minimizing residual lithium compounds.
Neha Garg   +3 more
wiley   +1 more source

Subverting patriarchal narratives: a feminist approach to critical video game design through participatory methods. [PDF]

open access: yesFront Sociol
Torres-Parra CR   +4 more
europepmc   +1 more source

Electric‐Field‐Driven Bilayer Interphase from Oxygenated Nanodiamond‐Carbon Nanoparticles for Dendrite‐Free Lithium Metal Batteries

open access: yesAdvanced Energy Materials, EarlyView.
Electric‐field‐driven carbon migration within an oxygen‐functionalized nanodiamond/carbon composite induces the formation of a vertically graded interphase that homogenizes Li‐ion flux and suppresses dendritic nucleation. This hierarchically organized structure stabilizes the electrode–electrolyte interface and delivers durable, dendrite‐free operation
Jaeseong Kim   +9 more
wiley   +1 more source

Engineering Na‐Rich P2‐Type Layered Oxides Through Li/Ti Dual Doping for Oxygen Redox Activation and Superior Structural Stability

open access: yesAdvanced Energy Materials, EarlyView.
P2‐type sodium layered oxides have potential for high‐voltage operation but suffer from structural instability and capacity fading. This work demonstrates that synergistic Li and Ti co‐doping enhances sodium inventory, suppresses detrimental phase transitions, and activates reversible lattice oxygen redox.
Rishika Jakhar   +16 more
wiley   +1 more source

Home - About - Disclaimer - Privacy