Results 271 to 280 of about 9,032,815 (373)

Neural Network‐Based Permittivity Engineering of Magnetic Absorbers for Customizable Microwave Absorption

open access: yesAdvanced Science, EarlyView.
A neural network‐enabled permittivity engineering paradigm is introduced, transcending traditional trial‐and‐error design. By decoupling electromagnetic parameters and screening a high‐throughput feature space, an ultrathin (1.0 mm) magnetic absorber is inversely designed, experimentally achieving a superior and customizable 5.1 GHz bandwidth and ...
Chenxi Liu   +9 more
wiley   +1 more source

Ultrahigh High‐temperature Capacitive Energy Storage Via Proton Irradiation

open access: yesAdvanced Science, EarlyView.
Proton irradiation concurrently induces enhanced dielectric constant and breakdown field in aromatic polymers with ether bonds, which enables an ultrahigh discharged energy density of 6.9 J cm−3 at above the efficiency of 95% at 150 °C, exceeding current dielectric polymers and nanocomposites.
Chenyi Li   +11 more
wiley   +1 more source

All‐Optical Control of Bidirectional Polarization Switching in Ferroelectric Heterostructures for Neuromorphic and In‐Memory Computing

open access: yesAdvanced Science, EarlyView.
We propose an optical ferroelectric field‐effect transistor, composed of a MoS2/CIPS heterostructure, demonstrates the feasibility of all‐optical nonvolatile memory, neuromorphic computing, and logic‐in‐memory operations. The device exhibits reversible light‐controlled memory states, retina‐like synaptic plasticity, and wavelength‐selective ...
Jingjie Niu   +7 more
wiley   +1 more source

Oxide Semiconductor Thin‐Film Transistors for Low‐Power Electronics

open access: yesAdvanced Science, EarlyView.
This review explores the progress of oxide semiconductor thin‐film transistors in low‐power electronics. It illustrates the inherent material advantages of oxide semiconductor, which enable it to meet the low‐power requirements. It also discusses current strategies for reducing power consumption, including interface and structure engineering.
Shuhui Ren   +8 more
wiley   +1 more source

Orbital Magnetic Moment Controlled Converse Magnetoelectric Effect in bcc‐Co3Mn/Fe/V/PMN‐PT Multiferroic Heterostructures

open access: yesAdvanced Science, EarlyView.
Based on orbital magnetic moment control, a material design strategy is proposed for a giant converse magnetoelectric effect in multiferroic heterostructures. This study will pioneer a promising route toward low‐power spintronic devices with an electric field.
Takamasa Usami   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy