Results 21 to 30 of about 31,264 (197)
Generalized Fibonacci Sequences for Elliptic Curve Cryptography
The Fibonacci sequence is a well-known sequence of numbers with numerous applications in mathematics, computer science, and other fields. In recent years, there has been growing interest in studying Fibonacci-like sequences on elliptic curves.
Zakariae Cheddour +2 more
doaj +1 more source
Edge-Disjoint Fibonacci Trees in Hypercube
The Fibonacci tree is a rooted binary tree whose number of vertices admit a recursive definition similar to the Fibonacci numbers. In this paper, we prove that a hypercube of dimension h admits two edge-disjoint Fibonacci trees of height h, two edge ...
Indhumathi Raman, Lakshmanan Kuppusamy
doaj +1 more source
On the Bicomplex $k$-Fibonacci Quaternions
In this paper, bicomplex $k$-Fibonacci quaternions are defined. Also, some algebraic properties of bicomplex $k$-Fibonacci quaternions are investigated.
Fügen Torunbalcı Aydın
doaj +1 more source
On $k$-Fibonacci balancing and $k$-Fibonacci Lucas-balancing numbers
The balancing number $n$ and the balancer $r$ are solution of the Diophantine equation $$1+2+\cdots+(n-1) = (n+1)+(n+2)+\cdots+(n+r). $$ It is well known that if $n$ is balancing number, then $8n^2 + 1$ is a perfect square and its positive square root is
S.E. Rihane
doaj +1 more source
On Fibonacci (k,p)-Numbers and Their Interpretations
In this paper, we define new kinds of Fibonacci numbers, which generalize both Fibonacci, Jacobsthal, Narayana numbers and Fibonacci p-numbers in the distance sense, using the definition of a distance between numbers by a recurrence relation according to
Berke Cengiz, Yasemin Taşyurdu
doaj +1 more source
The nature of electronic eigenstates and quantum transport in a comb-shaped Fibonacci nanostructure model is investigated within a tight-binding framework. Periodic linear chains are side-attached to a Fibonacci chain, giving it the shape of an aperiodic
Pal, Biplab
core +1 more source
Three new classes of binomial Fibonacci sums [PDF]
In this paper, we introduce three new classes of binomial sums involving Fibonacci (Lucas) numbers and weighted binomial coefficients. One particular result is linked to a problem proposal recently published in the journal The Fibonacci Quarterly.
Robert Frontczak
doaj +1 more source
Construction of dual-generalized complex Fibonacci and Lucas quaternions
The aim of this paper is to construct dual-generalized complex Fibonacci and Lucas quaternions. It examines the properties both as dual-generalized complex number and as quaternion. Additionally, general recurrence relations, Binet's formulas, Tagiuri's (
G.Y. Şentürk, N. Gürses, S. Yüce
doaj +1 more source
Tur\'an Graphs, Stability Number, and Fibonacci Index
The Fibonacci index of a graph is the number of its stable sets. This parameter is widely studied and has applications in chemical graph theory. In this paper, we establish tight upper bounds for the Fibonacci index in terms of the stability number and ...
A. Knopfmacher +20 more
core +1 more source
On the bounds for the spectral norms of geometric circulant matrices
In this paper, we define a geometric circulant matrix whose entries are the generalized Fibonacci numbers and hyperharmonic Fibonacci numbers. Then we give upper and lower bounds for the spectral norms of these matrices.
Can Kızılateş, Naim Tuglu
doaj +1 more source

