Results 181 to 190 of about 962 (220)
Some of the next articles are maybe not open access.

Bivariate fibonacci like p–polynomials

Applied Mathematics and Computation, 2011
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Tuglu, Naim   +2 more
openaire   +4 more sources

Supersymmetric Fibonacci polynomials

Analysis and Mathematical Physics, 2021
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire   +1 more source

Fibonacci-mandelbrot polynomials and matrices

ACM Communications in Computer Algebra, 2017
We explore a family of polynomials similar to the Mandelbrot polynomials called the Fibonacci-Mandelbrot polynomials defined by q 0 ( z ) = 0, q 1 ( z ) = 1, and q n
Chan, Eunice Y. S., Corless, Robert M.
openaire   +1 more source

\(d\)-Fibonacci and \(d\)-Lucas polynomials

2021
Summary: Riordan arrays give us an intuitive method of solving combinatorial problems. They also help to apprehend number patterns and to prove many theorems. In this paper, we consider the Pascal matrix, define a new generalization of Fibonacci and Lucas polynomials called \(d\)-Fibonacci and \(d\)-Lucas polynomials (respectively) and provide their ...
Sadaoui, Boualem, Krelifa, Ali
openaire   +1 more source

Fibonacci and Lucas polynomials

Mathematical Proceedings of the Cambridge Philosophical Society, 1981
The Fibonacci and Lucas polynomials Fn(z) and Ln(z) are denned. These reduce to the familiar Fibonacci and Lucas numbers when z = 1. The polynomials are shown to satisfy a second order linear difference equation. Generating functions are derived, and also various simple identities, and relations with hypergeometric functions, Gegenbauer and Chebyshev ...
Doman, B. G. S., Williams, J. K.
openaire   +2 more sources

Triangular numbers and generalized fibonacci polynomial

Mathematica Slovaca, 2022
AbstractIn the present paper, we study triangular numbers. We focus on the linear homogeneous recurrence relation of degree 3 with constant coefficients for triangular numbers. Then we deal with the relationship between generalized Fibonacci polynomials and triangular numbers.
openaire   +2 more sources

SOME GENERALIZED FIBONACCI AND HERMITE POLYNOMIALS

JP Journal of Algebra, Number Theory and Applications, 2018
Summary: This paper defines a generalized Fibonacci polynomial and then compares its properties with those of Hermite polynomials and associated numbers.
Shannon, A. G., Deveci, Ömür
openaire   +2 more sources

Generalized Humbert polynomials via generalized Fibonacci polynomials

Applied Mathematics and Computation, 2017
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Wang, Weiping, Wang, Hui
openaire   +2 more sources

Fibonacci Polynomials their Properties and Applications

Zeitschrift für Analysis und ihre Anwendungen, 1996
The paper deals with polynomials characterized by coefficients determined by successive elements of the Fibonacci sequence. Basic properties and applications of the Fibonacci polynomials are demonstrated. The index of concentration of Fibonacci polynomials at k
openaire   +2 more sources

Generalized Fibonacci Polynomials

The Fibonacci Quarterly, 1973
V. E. Hoggatt, Marjorie Bicknell
openaire   +1 more source

Home - About - Disclaimer - Privacy