Results 41 to 50 of about 7,865 (225)
A Study on Fibonacci and Lucas Bihypernomials
The bihyperbolic numbers are extension of hyperbolic numbers to four dimensions. In this paper we introduce and study the Fibonacci and Lucas bihypernomials, i.e., polynomials, which are a generalization of the bihyperbolic Fibonacci numbers and the ...
Szynal-Liana Anetta, Włoch Iwona
doaj +1 more source
The Fibonacci polynomials $\big\{F_n(x)\big\}_{n\ge 0}$ have been studied in multiple ways. In this paper we study them by means of the theory of Heaps of Viennot. In this setting our polynomials form a basis $\big\{P_n(x)\big\}_{n\ge 0}$ with $P_n(x)$ monic of degree $n$. This given, we are forced to set $P_n(x)=F_{n+1}(x)$.
Garsia, A., Ganzberger, G.
openaire +2 more sources
On quaternion-Gaussian Fibonacci polynomials
In this paper, we define Gaussian Fibonacci quaternion polynomials and Gaussian Lucas quaternion polynomials. We also investigate some properties of these quaternion polynomials.
openaire +2 more sources
On Certain Properties of Parametric Kinds of Apostol-Type Frobenius–Euler–Fibonacci Polynomials
This paper presents an overview of cosine and sine Apostol-type Frobenius–Euler–Fibonacci polynomials, as well as several identities that are associated with these polynomials.
Hao Guan+3 more
doaj +1 more source
This paper presents a comprehensive survey of the generalization of hybrid numbers and hybrid polynomials, particularly in the fields of mathematics and physics.
Can Kızılateş+2 more
doaj +1 more source
Incomplete Bivariate Fibonacci and Lucas 𝑝-Polynomials
We define the incomplete bivariate Fibonacci and Lucas 𝑝-polynomials. In the case 𝑥=1, 𝑦=1, we obtain the incomplete Fibonacci and Lucas 𝑝-numbers. If 𝑥=2, 𝑦=1, we have the incomplete Pell and Pell-Lucas 𝑝-numbers.
Dursun Tasci+2 more
doaj +1 more source
Solving systems of linear Fredholm integro-differential equations with Fibonacci polynomials
In this paper, we introduce a method to solve systems of linear Fredholm integro-differential equations in terms of Fibonacci polynomials. First, we present some properties of these polynomials then a new approach implementing a collocation method in ...
Farshid Mirzaee, Seyede Fatemeh Hoseini
doaj +1 more source
ABSTRACT We have studied possible applications of a particular pseudodifferential algebra in singular analysis for the construction of fundamental solutions and Green's functions of a certain class of elliptic partial differential operators. The pseudodifferential algebra considered in the present work, comprises degenerate partial differential ...
Heinz‐Jürgen Flad+1 more
wiley +1 more source
Novel Expressions for Certain Generalized Leonardo Polynomials and Their Associated Numbers
This article introduces new polynomials that extend the standard Leonardo numbers, generalizing Fibonacci and Lucas polynomials. A new power form representation is developed for these polynomials, which is crucial for deriving further formulas.
Waleed Mohamed Abd-Elhameed+3 more
doaj +1 more source
In this article, we evaluated the approximate solutions of one-dimensional variable-order space-fractional diffusion equations (sFDEs) by using a collocation method.
A. S. Mohamed
doaj +1 more source