Results 71 to 80 of about 454,219 (256)
A classification of infinite staircases for Hirzebruch surfaces
Abstract The ellipsoid embedding function of a symplectic manifold gives the smallest amount by which the symplectic form must be scaled in order for a standard ellipsoid of the given eccentricity to embed symplectically into the manifold. It was first computed for the standard four‐ball (or equivalently, the complex projective plane) by McDuff and ...
Nicki Magill+2 more
wiley +1 more source
A note on Q-matrices and higher order Fibonacci polynomials
The results described in a recent article, relative to a representation formula for the generalized Fibonacci sequences in terms of Q-matrices are extended to the case of Fibonacci, Tribonacci and R-bonacci polynomials.
P. Ricci
semanticscholar +1 more source
Strong bounds and exact solutions to the minimum broadcast time problem
Abstract Given a graph and a subset of its nodes, referred to as source nodes, the minimum broadcast time problem asks for the minimum number of steps in which a signal can be transmitted from the sources to all other nodes in the graph. In each step, the sources and the nodes that already have received the signal can forward it to at most one of their
Marika Ivanova+2 more
wiley +1 more source
Chebyshev polynomials and their some interesting applications
The main purpose of this paper is by using the definitions and properties of Chebyshev polynomials to study the power sum problems involving Fibonacci polynomials and Lucas polynomials and to obtain some interesting divisible properties.
Chen Li, Zhang Wenpeng
doaj +1 more source
On the Chebyshev polynomials and some of their new identities
The main purpose of this paper is, using the elementary methods and properties of the power series, to study the computational problem of the convolution sums of Chebyshev polynomials and Fibonacci polynomials and to give some new and interesting ...
Di Han, Xingxing Lv
doaj +1 more source
Conway polynomials of two-bridge links [PDF]
We give necessary conditions for a polynomial to be the Conway polynomial of a two-bridge link. As a consequence, we obtain simple proofs of the classical theorems of Murasugi and Hartley.
Koseleff, P. -V., Pecker, D.
core
Exploring Nonlinear Dynamics and Solitary Waves in the Fractional Klein–Gordon Model
Various nonlinear evolution equations reveal the inner characteristics of numerous real‐life complex phenomena. Using the extended fractional Riccati expansion method, we investigate optical soliton solutions of the fractional Klein–Gordon equation within this modified framework.
Md. Abde Mannaf+8 more
wiley +1 more source
On the Generalized Class of Multivariable Humbert‐Type Polynomials
The present paper deals with the class of multivariable Humbert polynomials having generalization of some well‐known polynomials like Gegenbauer, Legendre, Chebyshev, Gould, Sinha, Milovanović‐Djordjević, Horadam, Horadam‐Pethe, Pathan and Khan, a class of generalized Humbert polynomials in two variables etc.
B. B. Jaimini+4 more
wiley +1 more source
Some Properties of Generalized Apostol-Type Frobenius–Euler–Fibonacci Polynomials
In this paper, by using the Golden Calculus, we introduce the generalized Apostol-type Frobenius–Euler–Fibonacci polynomials and numbers; additionally, we obtain various fundamental identities and properties associated with these polynomials and numbers,
Maryam Salem Alatawi+3 more
doaj +1 more source
The Jones polynomials of 3-bridge knots via Chebyshev knots and billiard table diagrams [PDF]
This work presents formulas for the Kauffman bracket and Jones polynomials of 3-bridge knots using the structure of Chebyshev knots and their billiard table diagrams. In particular, these give far fewer terms than in the Skein relation expansion.
Cohen, Moshe
core