Results 131 to 140 of about 1,038,516 (299)

Flexibility and Dynamicity Enhances and Controls Supramolecular Self‐Assembly of Zinc(II) Metallogels

open access: yesAdvanced Functional Materials, EarlyView.
Zinc(II) coordination complexes with tunable aryloxy‐imine ligands exhibit controllable supramolecular self‐assembly into hierarchical fibrous structures. Coordination‐driven stacking, not π–π interactions, enables gelation, dynamic assembly/disassembly, and enhanced nanomechanical properties.
Merlin R. Stühler   +10 more
wiley   +1 more source

Photocatalytic Versus Stoichiometric Hydrogen Generation Using Mesoporous Silicon Catalysts: The Complex Role of Sacrificial Reagents

open access: yesAdvanced Functional Materials, EarlyView.
This study highlights the importance of accounting for stoichiometric hydrogen produced when utilizing Si photocatalysts. The stoichiometric contribution is sacrificial reagent dependent and decreases with increasing sterics around the catalyst surface.
Sarrah H. Putwa   +4 more
wiley   +1 more source

Exploiting the Functionality of Cerium Oxide‐Modified Carbon Nanohorns Catalysts Toward Enhanced CO2 Reduction Performance

open access: yesAdvanced Functional Materials, EarlyView.
A cerium oxide‐carbon nanohybrid catalyst is synthesized via two distinct routes and is integrated into H‐type cells and gas diffusion layers (GDLs) to enhance electrochemical performance. Structural variations significantly affect performance, with the solvothermal sample exhibiting higher current densities.
Alessia Pollice   +9 more
wiley   +1 more source

Mechanically Tunable Bone Scaffolds: In Vivo Hardening of 3D‐Printed Calcium Phosphate/Polycaprolactone Inks

open access: yesAdvanced Functional Materials, EarlyView.
A 3D bone scaffold with osteogenic properties and capable of hardening in vivo is developed. The scaffold is implanted in a ductile state, and a phase transformation of the ceramic induces the stiffening and strengthening of the scaffold in vivo. Abstract Calcium phosphate 3D printing has revolutionized customized bone grafting.
Miguel Mateu‐Sanz   +7 more
wiley   +1 more source

Emergence of Light‐Transforming Layered Hybrid Halide Perovskites

open access: yesAdvanced Functional Materials, EarlyView.
The emerging class of light‐transforming layered halide perovskite materials is reviewed, outlining challenges for their development and perspectives toward application in the future. Abstract Layered hybrid halide perovskites (LHPs) have attracted considerable attention in optoelectronics.
Ghewa AlSabeh, Jovana V. Milić
wiley   +1 more source

Clean‐Limit 2D Superconductivity in a Thick Exfoliated Kagome Film

open access: yesAdvanced Functional Materials, EarlyView.
This study reports clean‐limit 2D superconductivity in a thick kagome system, analogous to the 3D case. It observes a drop in superfluid stiffness near the superconducting transition and a cusp‐like feature in the angular dependence of the upper critical field.
Fei Sun   +3 more
wiley   +1 more source

Unveiling Phonon Contributions to Thermal Conductivity and the Applicability of the Wiedemann—Franz Law in Ruthenium and Tungsten Thin Films

open access: yesAdvanced Functional Materials, EarlyView.
Thermal transport in Ru and W thin films is studied using steady‐state thermoreflectance, ultrafast pump–probe spectroscopy, infrared‐visible spectroscopy, and computations. Significant Lorenz number deviations reveal strong phonon contributions, reaching 45% in Ru and 62% in W.
Md. Rafiqul Islam   +14 more
wiley   +1 more source

Decoupling Size and Electronic Effects in Doped SrTiO3 Photocatalysts Through Surface Area–Normalized CO2 Hydrogenation Rates

open access: yesAdvanced Functional Materials, EarlyView.
Exploring the photocatalytic reverse water–gas shift (RWGS) reaction on doped SrTiO3 nanoparticle films, reveals that normalizing catalytic rates by the catalyst's specific surface area (SSA) disentangled surface area effects from the catalyst's intrinsic material properties.
Dikshita Bhattacharyya   +6 more
wiley   +1 more source

Electroactive Metal–Organic Frameworks for Electrocatalysis

open access: yesAdvanced Functional Materials, EarlyView.
Electrocatalysis is crucial in sustainable energy conversion as it enables efficient chemical transformations. The review discusses how metal–organic frameworks can revolutionize this field by offering tailorable structures and active site tunability, enabling efficient and selective electrocatalytic processes.
Irena Senkovska   +7 more
wiley   +1 more source

Band Alignment in In‐Oxo Metal Porphyrin SURMOF Heterojunctions

open access: yesAdvanced Functional Materials, EarlyView.
Porphyrin core metalation in indium‑oxo SURMOFs enables systematic tuning of band edge positions without altering the crystal structure. First‑principles calculations reveal type‑I and type‑II heterostructures as well as multi‑junction energy cascades, establishing a modular strategy for exciton funneling and charge separation in optoelectronic ...
Puja Singhvi, Nina Vankova, Thomas Heine
wiley   +1 more source

Home - About - Disclaimer - Privacy