Results 301 to 310 of about 1,610,811 (337)
2D Multifunctional Spin‐Orbit Coupled Dirac Nodal Line Materials
A total of 473 nonmagnetic and antiferromagnetic 2D spin‐orbit coupled Dirac nodal line materials are screened, spanning 5 layer groups and 12 magnetic space groups. Furthermore, it integrates their topological properties with electride, multiferroic, and magnetic characteristics, revealing unique systems with expanded functionalities and promising ...
Weizhen Meng+7 more
wiley +1 more source
Porous silicon nanoparticles (PSiNPs) reprogram macrophage endocytosis of manganese@albumin‐based TLR4 nanoagonists, driving TRIF‐biased TLR4 signaling, eliciting robust proinflammatory responses, and potentiating macrophage‐mediated immunotherapeutic effects against NSCLC.
Xiaomei Zhang+9 more
wiley +1 more source
This study demonstrates that cholesterol in messenger RNA‐lipid nanoparticles (mRNA‐LNPs) can be completely replaced with an immunopotentiating lipid, i.e., a synthetic analogue of the C‐type lectin receptor agonist monomycoloyl glycerol (MMG‐1), without compromising physicochemical properties, in vivo transfection efficiency, and immunogenicity of the
Abhijeet G. Lokras+19 more
wiley +1 more source
Conformally Perforated Shellular Metamaterials with Tunable Thermomechanical and Acoustic Properties
This study introduces Conformally Perforated Shellular Metamaterials (CPSMs), which overcome TPMS design limitations by mapping 2D cellular layouts onto 3D surfaces. CPSMs exhibit enhanced elastic stiffness, thermal conductivity, and acoustic performance compared to intact P‐type shellulars, demonstrating their potential as multifunctional ...
Benyamin Shahryari+8 more
wiley +1 more source
Machine Learning Guided Design of Nerve‐On‐A‐Chip Platforms with Promoted Neurite Outgrowth
Compared to labor‐intensive trial‐and‐error experimentation, a machine learning (ML)‐guided workflow, incorporating cell viability assays, data augmentation, ensemble modeling, and model interpretation, is developed to accelerate nerve‐on‐a‐chip optimization and uncover data‐driven design principles.
Tsai‐Chun Chung+8 more
wiley +1 more source
The chemical composition and band alignment are systematically investigated at the TiO2/InP heterointerface. Thin TiO2 films are deposited by ALD on atomically ordered, P‐terminated p‐InP(100). By combining UPS, XPS, and ab initio molecular dynamics, the atomistic structure and electronic alignment are revealed.
Mohammad Amin Zare Pour+11 more
wiley +1 more source
By integrating machine learning into flux‐regulated crystallization (FRC), accurate prediction of solvent evaporation rates in real time, improving crystallization control and reducing crystal growth variability by over threefold, is achieved. This enhances the reproducibility and quality of perovskite single crystals, leading to reproducible ...
Tatiane Pretto+8 more
wiley +1 more source
Ambient‐dried composite aerogels integrating MOF‐303, TEMPO‐oxidized cellulose nanofibers (TOCNF), and hygroscopic salts enable high‐performance atmospheric water harvesting (AWH), achieving competitive uptake at both low and high humidity. Enhanced with a solar‐evaporation layer, these scalable aerogels support self‐sustained plant growth in a ...
Ahmadreza Ghaffarkhah+12 more
wiley +1 more source
Quantifying Electron and Ion Transfers in Contact Electrification with Ionomers
The concurrent existence of both electron and ion transfers in solid‐ionomer contact electrification is reported. The ion transfer contributes significantly to the process of contact electrification, especially at high humidity, although only less than 2% of ions participate in the ion transfer, suggesting that there is room for further performance ...
Xiaoting Ma+5 more
wiley +1 more source