Results 21 to 30 of about 2,339,630 (195)
The MaterialDigital initiative drives the digital transformation of material science by promoting findable, accessible, interoperable, and reusable principles and enhancing data interoperability. This article explores the role of scientific workflows, highlights challenges in their adoption, and introduces the Workflow Store as a key tool for sharing ...
Simon Bekemeier+37 more
wiley +1 more source
This study explores the energy conversion in powder bed fusion of polymers using laser beam for polyamide 12 and polypropylene powders. It combines material and process data, using dimensionless parameters and numerical models, to enable the prediction of suitable printing parameters.
Christian Schlör+9 more
wiley +1 more source
Laboratory protocols for producing thin‐film pH electrodes for sterilized single‐use technologies have been successfully developed into a semiautomated workflow, with higher throughput and precision of membrane thickness. Accuracies are within 0.05 pH units versus ground truth, and uncertainty analysis reveals the largest sources of error to be derived
Bingyuan Zhao+4 more
wiley +1 more source
Development of Aluminum Scandium Alloys for Hydrogen Storage Valves
Different aluminum alloy series and various aluminum‐scandium alloys with differing Sc and Zr levels are evaluated for use in hydrogen storage valve production. The alloys undergo hardness testing, optical microscopy, and tensile strength analysis, with hardening behavior studied under varying conditions.
Francisco García‐Moreno+4 more
wiley +1 more source
Predicting 2D Crystal Packing in Thin Films of Small Molecule Organic Materials
A computational method is proposed for predicting the 2D molecular packing in crystalline thin films of flexible organic molecules. The approach employs a grid search for molecular arrangements, achieving accurate predictions of 2D packing motifs with strongly reduced computational costs.
Alexey O. Gudovannyy+6 more
wiley +1 more source
A novel low‐bandgap random terpolymer is designed for narrow band detection in charge collection narrowing (CCN) based organic photodetectors. With a relative thin active layer (<1 µm), the CCN‐based devices achieved a narrowband response of 68 nm full‐width‐at‐half‐maximum at 916 nm, together with Responsivity values of 0.13 A W−1 and dark current of ...
Matilde Brunetta+14 more
wiley +1 more source
Intelligent radiative cooling devices, adaptable to various weather conditions, have the potential for year‐round energy savings. This study introduces a sustainable dual‐mode film made from polycaprolactone nanofibers and upcycled chip bags for effective thermal management.
Qimeng Song+4 more
wiley +1 more source
Efflux‐mediated resistance compromises antibiotic efficacy, yet rapid detection remains elusive. This study presents a novel phenazinium‐based diagnostic molecule for quantifying bacterial efflux levels in Gram‐positive pathogens. The optimized compound enables precise, real‐time efflux assessment using fluorescence and colorimetric techniques ...
Mrunal Patil+15 more
wiley +1 more source
Pushing Radiative Cooling Technology to Real Applications
Radiative cooling controls surface optical properties for solar and thermal radiation, offering solutions for global warming and energy savings. Despite significant advances, key challenges remain: optimizing optical efficiency, maintaining aesthetics, preventing overcooling, enhancing durability, and enabling scalable production.
Chongjia Lin+8 more
wiley +1 more source
Synthetic Aspects and Characterization Needs in MOF Chemistry – from Discovery to Applications
Overcoming the challenges of phase discovery, synthesis optimization and scale‐up, characterization, and computational studies is essential to accelerate the large‐scale application of MOFs. Life‐cycle analyses and techno‐economic analyses need to be performed to realistically assess their potential for industrial relevance.
Bastian Achenbach+4 more
wiley +1 more source