Results 221 to 230 of about 1,072,986 (332)

Rolling and Impacting Caustic Drops on Super Liquid‐Repellent Surfaces: In Situ Force and Energy Monitoring of Surface Degradation

open access: yesAdvanced Functional Materials, EarlyView.
The use of continuous drop‐based force and energy probing methods is introduced to evaluate in situ chemical degradation of super liquid‐repellent surfaces by caustic liquids. By tracking the velocity of rolling drops and energy dissipation of impacting drops, degradation dynamics are resolved under high spatio‐temporal precision. Using this technique,
Parham Koochak   +2 more
wiley   +1 more source

Finite-time stability for switched singular systems

open access: hybrid, 2014
Zhang Yao-li   +3 more
openalex   +1 more source

Programmable In‐Situ Interactions Between Resins and Photopolymerized Structures for Seamlessly Integrated Optical Manufacturing of Microlenses

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a dynamic interaction between liquid resins and photopolymerized structures enabled by an in situ light‐writing setup. By controlling a three‐phase interface through localized photopolymerization, which provides physical confinement for the remaining uncured resin regions, the approach establishes a programmable pathway that ...
Kibeom Kim   +3 more
wiley   +1 more source

Main elements of current spine biomechanics research: model, installation and test data. [PDF]

open access: yesFront Bioeng Biotechnol
Xu B   +6 more
europepmc   +1 more source

Bio‐Inspired Magnetically Tunable Structural Colors from Elliptical Self‐Assembled Block Copolymer Microparticles

open access: yesAdvanced Functional Materials, EarlyView.
Cephalopod‐inspired photonic microparticles with dynamic structural coloration are fabricated via confined self‐assembly of linear block copolymers into ellipsoids containing stacked lamellae. Embedded superparamagnetic nanoparticles enable rapid magnetic alignment, restoring vivid, angle‐dependent color.
Gianluca Mazzotta   +8 more
wiley   +1 more source

Two‐Way Shape Memory Alloy and Polymer Composite Hybrid Smart Actuator With High Speed, Accuracy, and Reversible Deformation

open access: yesAdvanced Functional Materials, EarlyView.
Tailored thermo‐mechanical properties of shape memory polymer composites enable large reversible deformation as well as high actuation speed. Moreover, a structural design with curvature in the transverse direction achieves sub‐second actuation on heating and a larger recovery ratio on cooling. Finally, these newly developed smart two‐way actuators can
Dajeong Kang   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy