Results 101 to 110 of about 276,781 (279)
On a rigidity property for quadratic gauss sums
Abstract Let N$N$ be a large prime and let c>1/4$c > 1/4$. We prove that if f$f$ is a ±1$\pm 1$‐valued multiplicative function, such that the exponential sums Sf(a):=∑1⩽n
Alexander P. Mangerel
wiley +1 more source
The modular automorphisms of quotient modular curves
Abstract We obtain the modular automorphism group of any quotient modular curve of level N$N$, with 4,9∤N$4,9\nmid N$. In particular, we obtain some unexpected automorphisms of order 3 that appear for the quotient modular curves when the Atkin–Lehner involution w25$w_{25}$ belongs to the quotient modular group. We also prove that such automorphisms are
Francesc Bars, Tarun Dalal
wiley +1 more source
Relational Bundle Geometric Formulation of Non‐Relativistic Quantum Mechanics
Abstract A bundle geometric formulation of non‐relativistic many‐particles Quantum Mechanics is presented. A wave function is seen to be a C$\mathbb {C}$‐valued cocyclic tensorial 0‐form on configuration space‐time seen as a principal bundle, while the Schrödinger equation flows from its covariant derivative, with the action functional supplying a ...
J. T. François, L. Ravera
wiley +1 more source
It is studied how rank two pure subgroups of a torsion-free Abelian group of rank three influences its structure and type set. In particular, the criterion for such a subgroup B to be a direct summand of a torsion-free Abelian group of rank three with ...
Najafizadeh Alireza, Woronowicz Mateusz
doaj +1 more source
We show that there is a class of finite groups, the so-called perfect groups, which cannot exhibit anomalies. This implies that all non-Abelian finite simple groups are anomaly-free. On the other hand, non-perfect groups generically suffer from anomalies.
Mu-Chun Chen +4 more
doaj +1 more source
Graphs of finite abelian groups [PDF]
Bertholf, Dennis, Walls, Gary
openaire +2 more sources
A gap theorem for the ZL-amenability constant of a finite group [PDF]
It was shown in [A. Azimifard, E. Samei, N. Spronk, JFA 256 (2009)] that the ZL-amenability constant of a finite group is always at least~$1$, with equality if and only if the group is abelian. It was also shown in [A. Azimifard, E. Samei, N.
Yemon Choi
doaj
THE STRUCTURE OF FINITE ABELIAN p-GROUPS BY THE ORDER OF THEIR SCHUR MULTIPLIERS
A well-known result of Green [4] shows for any finite p-group G of order p^n, there is an integer t(G) , say corank(G), such that |M(G)|=p^(1/2n(n-1)-t(G)) . Classifying all finite p-groups in terms of their corank, is still an open problem.
Mohsen Parvizi +3 more
doaj
The Sidon Constant of a Finite Abelian Group [PDF]
It is shown that the Helson constant of a finite abelian group, G, is exactly ( Card G ) 1 / 2 {({\text {Card}}\;G)^{1/2}} .
openaire +1 more source

