Results 51 to 60 of about 277,944 (294)
Limit groups and groups acting freely on R^n-trees
We give a simple proof of the finite presentation of Sela's limit groups by using free actions on R^n-trees. We first prove that Sela's limit groups do have a free action on an R^n-tree.
Bass +13 more
core +1 more source
Annihilating Graph of Abelian Groups
In [18], the author associated a graph to an R -module M which is precisely a generalization of annihilating ideal graph of a commutative ring, see [15] and [16]. Inasmuch as Abelian groups are precisely Z-modules, in this paper we relate an annihilating
saeed safaeeyan, Soraya Barzegar
doaj
Local nearrings on finite non-abelian $2$-generated $p$-groups
It is proved that for ${p>2}$ every finite non-metacyclic $2$-generated p-group of nilpotency class $2$ with cyclic commutator subgroup is the additive group of a local nearring and in particular of a nearring with identity.
I.Yu. Raievska, M.Yu. Raievska
doaj +1 more source
The coarse classification of countable abelian groups [PDF]
We prove that two countable locally finite-by-abelian groups G,H endowed with proper left-invariant metrics are coarsely equivalent if and only if their asymptotic dimensions coincide and the groups are either both finitely-generated or both are ...
Banakh, T., Higes, J., Zarichinyy, I.
core
Vector bundles on bielliptic surfaces: Ulrich bundles and degree of irrationality
Abstract This paper deals with two problems about vector bundles on bielliptic surfaces. The first is to give a classification of Ulrich bundles on such surfaces S$S$, which depends on the topological type of S$S$. In doing so, we study the weak Brill–Noether property for moduli spaces of sheaves with isotropic Mukai vector. Adapting an idea of Moretti
Edoardo Mason
wiley +1 more source
On a question of Jaikin-Zapirain about the average order elements of finite groups [PDF]
For a finite group $G$, the average order $o(G)$ is defined to be the average of all order elements in $G$, that is $o( G)=\frac{1}{|G|}\sum_{x\in G}o(x)$, where $o(x)$ is the order of element $x$ in $G$.
Bijan Taeri, Ziba Tooshmalani
doaj +1 more source
Several Zagreb indices of power graphs of finite non-abelian groups
Molecular topology can be described by using topological indices. These are quantitative measures of the essential structural features of a proposed molecule calculated from its molecular structure.
Rashad Ismail +5 more
doaj +1 more source
Gabor analysis over finite Abelian groups [PDF]
The topic of this paper are (multi-window) Gabor frames for signals over finite Abelian groups, generated by an arbitrary lattice within the finite time-frequency plane.
Feichtinger, H. G., Kozek, W., Luef, F.
core
Aggregation and the Structure of Value
ABSTRACT Roughly, the view I call “Additivism” sums up value across time and people. Given some standard assumptions, I show that Additivism follows from two principles. The first says that how lives align in time cannot, in itself, matter. The second says, roughly, that a world cannot be better unless it is better within some period or another.
Weng Kin San
wiley +1 more source
Torsion locally nilpotent groups with non-Dedekind norm of Abelian non-cyclic subgroups
The authors study relations between the properties of torsion locally nilpotent groups and their norms of Abelian non-cyclic subgroups. The impact of the norm of Abelian non-cyclic subgroups on the properties of the group under the condition of norm non ...
T.D. Lukashova, M.G. Drushlyak
doaj +1 more source

