Results 241 to 250 of about 3,694,751 (350)

Development of Substrate‐Independent Antifouling and Bactericidal Surfaces Using Visible Light Cross‐Linked Hydrogel Coatings for Biomedical Applications

open access: yesAdvanced Healthcare Materials, EarlyView.
A new antifouling, antithrombogenic, and bactericidal hydrogel coating method is developed for implantable medical devices. The hydrogel coating can be easily formed by visible‐light crosslinking and is universally applicable to all substrates, ranging from polymers to metals.
Soonjong Roh   +4 more
wiley   +1 more source

Semiconducting Polymer Nanoparticles as Multimodal Agents for Optical and Magnetic Resonance Imaging

open access: yesAdvanced Healthcare Materials, EarlyView.
Semiconducting polymer nanoparticles (SPNs) exhibit many advantageous optical and biological properties. Multimodal SPN‐based contrast agents that integrate several imaging modalities yield a wealth of information through the use of different imaging mechanisms.
Faysal A. Farah   +3 more
wiley   +1 more source

Magnetic‐Driven Torque‐Induced Electrical Stimulation for Millisecond‐Scale Wireless Neuromodulation

open access: yesAdvanced Healthcare Materials, EarlyView.
MagTIES is a wireless neuromodulation technique with millisecond precision. It employs magnetic‐driven torque from magnetite nanodiscs to activate piezoelectric nanoparticles, enabling precise temporal control of neuronal activity and brain oscillations using weak, low‐frequency magnetic fields.
Chao‐Chun Cheng   +5 more
wiley   +1 more source

An Organ‐on‐Chip Platform for Strain‐Controlled, Tissue‐Specific Compression of Cartilage and Mineralized Osteochondral Interface to Study Mechanical Overloading in Osteoarthritis

open access: yesAdvanced Healthcare Materials, EarlyView.
A mechanically active OsteoChondral Unit (OCU)‐on‐Chip platform mimicking the OCU's functional anatomy and the strain gradient across the osteochondral interface is presented. Upon compartment‐specific hyperphysiological compression, the model replicates mechanisms observed in osteoarthritis (OA) progression, such as calcium crystal accumulation ...
Andrea Mainardi   +10 more
wiley   +1 more source

Therapeutic Implants: Mechanobiologic Enhancement of Osteogenic, Angiogenic, and Myogenic Responses in Human Mesenchymal Stem Cells on 3D‐Printed Titanium Truss

open access: yesAdvanced Healthcare Materials, EarlyView.
This study investigates a synergistic effect between 3D‐printed surface features and mechanical micro‐strain in enhancing the osteogenic, angiogenic, and myogenic responses of human mesenchymal stem cells (hMSCs). Load‐induced mechanotransduction, facilitated by the implant's architectural design, significantly amplifies hMSC differentiation.
Se‐Hwan Lee   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy