Results 131 to 140 of about 1,340,026 (338)

Patterning the Void: Combining L‐Systems with Archimedean Tessellations as a Perspective for Tissue Engineering Scaffolds

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a novel multi‐scale scaffold design using L‐fractals arranged in Archimedean tessellations for tissue regeneration. Despite similar porosity, tiles display vastly different tensile responses (1–100 MPa) and deformation modes. In vitro experiments with hMSCs show geometry‐dependent growth and activity. Over 55 000 tile combinations
Maria Kalogeropoulou   +4 more
wiley   +1 more source

Advances in Micro/Nanofiber‐Based Porous Materials for High‐Performance Thermal Insulation

open access: yesAdvanced Functional Materials, EarlyView.
Micro/nanofiber porous materials have engendered great interest in the thermal insulation field. Herein, the structural designs, fabrication techniques, and applications of the micro/nanofiber thermal insulation materials are systematically summarized.
Xiaobao Gong   +5 more
wiley   +1 more source

The Synergy of Artificial Intelligence and 3D Bioprinting: Unlocking New Frontiers in Precision and Tissue Fabrication

open access: yesAdvanced Functional Materials, EarlyView.
Advances in integrating artificial intelligence into 3D bioprinting are systematically reviewed here. Machine learning, computer vision, robotics, natural language processing, and expert systems are examined for their roles in optimizing bioprinting parameters, real‐time monitoring, quality control, and predictive maintenance.
Joao Vitor Silva Robazzi   +10 more
wiley   +1 more source

Sensitivity analysis of non-uniform rational B-splines–based finite element/boundary element coupling in structural-acoustic design

open access: yesFrontiers in Physics
For the purpose of modeling the acoustic fluid-structure interaction using direct differentiation method and conducting a structural-acoustic sensitivity analysis, a coupling approach based on the finite element method and the fast multipole boundary ...
Yanming Xu, Sen Yang, Sen Yang
doaj   +1 more source

Polaronic and Electrochemical Signatures in Group IVB (Ti, Zr, Hf) Oxides: Unified SKP–DFT Insights for Tunable Transport in Energy and Electronic Devices

open access: yesAdvanced Functional Materials, EarlyView.
Charge carrier concentration and mobility in TiO2, ZrO2, and HfO2 powder films are experimentally mapped as a function of temperature. The results uncover polaron‐mediated transport regimes and field‐activated conduction, enabling the design of oxide‐based electronic and energy devices with thermally tunable functionality.
Beatriz Moura Gomes   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy