Results 1 to 10 of about 149 (69)
Solvability of invariant systems of differential equations on H2$\mathbb {H}^2$ and beyond
Abstract We show how the Fourier transform for distributional sections of vector bundles over symmetric spaces of non‐compact type G/K$G/K$ can be used for questions of solvability of systems of invariant differential equations in analogy to Hörmander's proof of the Ehrenpreis–Malgrange theorem.
Martin Olbrich, Guendalina Palmirotta
wiley +1 more source
On the topological ranks of Banach ∗$^*$‐algebras associated with groups of subexponential growth
Abstract Let G$G$ be a group of subexponential growth and C→qG$\mathcal C\overset{q}{\rightarrow }G$ a Fell bundle. We show that any Banach ∗$^*$‐algebra that sits between the associated ℓ1$\ell ^1$‐algebra ℓ1(G|C)$\ell ^1(G\,\vert \,\mathcal C)$ and its C∗$C^*$‐envelope has the same topological stable rank and real rank as ℓ1(G|C)$\ell ^1(G\,\vert ...
Felipe I. Flores
wiley +1 more source
Jordan homomorphisms and T‐ideals
Abstract Let A$A$ and B$B$ be associative algebras over a field F$F$ with char(F)≠2${\rm char}(F)\ne 2$. Our first main result states that if A$A$ is unital and equal to its commutator ideal, then every Jordan epimorphism φ:A→B$\varphi:A\rightarrow B$ is the sum of a homomorphism and an antihomomorphism. Our second main result concerns (not necessarily
Matej Brešar, Efim Zelmanov
wiley +1 more source
The BRST invariant Lagrangian of the gravitationally interacting U(1)$U(1)$ gauge theory, namely the Quantum GraviElectro Dynamics (QGED). The Yan–Mills theory with the Hilbert–Einstein gravitational Lagrangian, namely the Yang–Mills–Utiyama (YMU) theory, is defined and quantised using the standard procedure. The theory is perturbatively renormalisable,
Yoshimasa Kurihara
wiley +1 more source
On stabilizers in finite permutation groups
Abstract Let G$G$ be a permutation group on the finite set Ω$\Omega$. We prove various results about partitions of Ω$\Omega$ whose stabilizers have good properties. In particular, in every solvable permutation group there is a set‐stabilizer whose orbits have length at most 6, which is best possible and answers two questions of Babai.
Luca Sabatini
wiley +1 more source
Residually rationally solvable one‐relator groups
Abstract We show that the intersection of the rational derived series of a one‐relator group is rationally perfect and is normally generated by a single element. As a corollary, we characterise precisely when a one‐relator group is residually rationally solvable.
Marco Linton
wiley +1 more source
Radical preservation and the finitistic dimension
Abstract We introduce the notion of radical preservation and prove that a radical‐preserving homomorphism of left artinian rings of finite projective dimension with superfluous kernel reflects the finiteness of the little finitistic, big finitistic, and global dimension.
Odysseas Giatagantzidis
wiley +1 more source
Equivariant v1,0⃗$v_{1,\vec{0}}$‐self maps
Abstract Let G$G$ be a cyclic p$p$‐group or generalized quaternion group, X∈π0SG$X\in \pi _0 S_G$ be a virtual G$G$‐set, and V$V$ be a fixed point free complex G$G$‐representation. Under conditions depending on the sizes of G$G$, X$X$, and V$V$, we construct a self map v:ΣVC(X)(p)→C(X)(p)$v\colon \Sigma ^V C(X)_{(p)}\rightarrow C(X)_{(p)}$ on the ...
William Balderrama +2 more
wiley +1 more source
Coxeter's enumeration of Coxeter groups
Abstract In a short paper that appeared in the Journal of the London Mathematical Society in 1934, H. S. M. Coxeter completed the classification of finite Coxeter groups. In this survey, we describe what Coxeter did in this paper and examine an assortment of topics that illustrate the broad and enduring influence of Coxeter's paper on developments in ...
Bernhard Mühlherr, Richard M. Weiss
wiley +1 more source
The first two group theory papers of Philip Hall
Abstract In this paper, we discuss the first two papers on soluble groups written by Philip Hall and their influence on the study of finite groups. The papers appeared in 1928 and 1937 in the Journal of the London Mathematical Society.
Inna Capdeboscq
wiley +1 more source

