Results 121 to 130 of about 315,730 (240)

Designing High Performance Organic Donor Molecules for Photovoltaics

open access: yesAdvanced Theory and Simulations, EarlyView.
Systematically tuning the fusion pattern and length of the π$\pi$‐bridge, along with adjusting the electron‐withdrawing (EW) strength of the terminal groups in small‐molecule donor A-π-Core-π$\text{A-}\pi \text{-Core-}\pi$‐A architectures, enables predictable modulation of the system's opto‐electronic properties.
Fabian Bauch   +2 more
wiley   +1 more source

Hyperviscous Diabetic Bone Marrow Niche Impairs BMSCs Osteogenesis via TRPV2‐Mediated Cytoskeletal‐Nuclear Mechanotransduction

open access: yesAdvanced Science, EarlyView.
Diabetic bone marrow exhibits pathological ECM hyperviscosity that activates TRPV2‐mediated Ca2⁺ influx, leading to perinuclear F‐actin disassembly, nuclear deformation, and chromatin condensation. This cytoskeletal‐nuclear decoupling suppresses osteogenic differentiation of BMSCs.
Yao Wen   +8 more
wiley   +1 more source

Single‐Field Evolution Rule Governs the Dynamics of Representational Drift in Mouse Hippocampal Dorsal CA1 Region

open access: yesAdvanced Science, EarlyView.
Long‐term hippocampal place‐code dynamics are investigated using calcium imaging across weeks of maze navigation. Analyses reveal a novelty‐irrelevant Single‐Field Evolution Rule (SFER), where active fields promote persistence and inactive fields decline.
Cong Chen   +10 more
wiley   +1 more source

Robotic Materials With Bioinspired Microstructures for High Sensitivity and Fast Actuation

open access: yesAdvanced Science, EarlyView.
In the review paper, design rationale and approaches for bioinspired sensors and actuators in robotics applications are presented. These bioinspired microstructure strategies implemented in both can improve the performance in several ways. Also, recent ideas and innovations that embed robotic materials with logic and computation with it are part of the
Sakshi Sakshi   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy