Results 51 to 60 of about 96,100 (268)
This study examines how several molten high‐silicon electrical steels interact with both conventional and recycled MgO–C refractories. For this, various immersion experiments are conducted. In addition to infiltration, a number of mechanisms are identified and explained that control the corrosion of the refractory material.
Lukas Neubert +7 more
wiley +1 more source
Curvature‐tuned auxetic lattices are designed, fabricated, and mechanically characterized to reveal how geometric curvature governs stretchability, stress redistribution, and Poisson's ratio evolution. Photoelastic experiments visualize stress pathways, while hyperelastic simulations quantify deformation mechanics.
Shuvodeep De +3 more
wiley +1 more source
New superconvergent structures developed from the finite volume element method in 1D [PDF]
Xiang Wang, Junliang Lv, Yonghai Li
openalex +1 more source
In this experimental study, the mechanical properties of additively manufactured Ti‐6Al‐4V lattice structures of different geometries are characterized using compression, four point bending and fatigue testing. While TPMS designs show superior fatigue resistance, SplitP and Honeycomb lattice structures combine high stiffness and strength. The resulting
Klaus Burkart +3 more
wiley +1 more source
The results demonstrate a simulation‐driven workflow that applies LSB topology optimization with additive manufacturing constraints to mission‐specific load cases, integrating European Cooperation for Space Standardization compliant verification and manufacturability to develop structurally efficient rover suspension components.
Stelios K. Georgantzinos +11 more
wiley +1 more source
FINITE VOLUME METHOD FOR SOLVING THREE-DIMENSIONAL ELECTRIC FIELD DISTRIBUTION
The paper examines a new approach to finite volume method which is used to calculate the electric field spatially homogeneous three-dimensional environment.
Paţiuc V.I., Ribacova G., Berzan V.P.
doaj
A two‐step approach combining laser powder bed fusion of FeSi electrical steel with Bakelite infiltration enables the fabrication of multifunctional gyroid lattice composites. The resulting structures exhibit high strength, magnetic anisotropy, and complete polymer infiltration, demonstrating a simple and scalable route toward lightweight, mechanically
Angelo F. Andreoli +9 more
wiley +1 more source
Thermoelectric Modules Incorporating MgAgSb and Mg3(Sb,Bi)2 Synthesized Using a Melting Method
A scalable synthesis method for a thermoelectric material of MgAgSb is established. A thermoelectric power module of MgAgSb/Mg3(Sb,Bi)2 is fabricated, showing the conversion efficiency of 7.4% at ΔT = 315 K. The performance is comparable to conventional Bi2Te3 modules when they are operated with an air‐cooled heat exchanger.
Kazuo Nagase +8 more
wiley +1 more source
Exploring the Impact of Concentration and Temperature Variations on Transient Natural Convection in Metal Electrodeposition: A Finite Volume Method Analysis [PDF]
A.N. Colli, J.M. Bisang
openalex +1 more source
In this study, the interplay of dipolar dynamics and ionic charge transport in MOF compounds is investigated. Synthesizing the novel structure CFA‐25 with integrated freely rotating dipolar groups, local and macroscopic effects, including interactions with Cs cations are explored.
Ralph Freund +6 more
wiley +1 more source

