Results 71 to 80 of about 34,296 (212)
A note on local formulae for the parity of Selmer ranks
Abstract In this note, we provide evidence for a certain ‘twisted’ version of the parity conjecture for Jacobians, introduced in prior work of Dokchitser, Green, Konstantinou and the author. To do this, we use arithmetic duality theorems for abelian varieties to study the determinant of certain endomorphisms acting on p∞$p^\infty$‐Selmer groups.
Adam Morgan
wiley +1 more source
Normal covering numbers for Sn$S_n$ and An$A_n$ and additive combinatorics
Abstract The normal covering number γ(G)$\gamma (G)$ of a noncyclic group G$G$ is the minimum number of proper subgroups whose conjugates cover the group. We give various estimates for γ(Sn)$\gamma (S_n)$ and γ(An)$\gamma (A_n)$ depending on the arithmetic structure of n$n$. In particular we determine the limsups over γ(Sn)/n$\gamma (S_n) / n$ and γ(An)
Sean Eberhard, Connor Mellon
wiley +1 more source
Growth problems in diagram categories
Abstract In the semisimple case, we derive (asymptotic) formulas for the growth rate of the number of summands in tensor powers of the generating object in diagram/interpolation categories.
Jonathan Gruber, Daniel Tubbenhauer
wiley +1 more source
Units in group rings and blocks of Klein four or dihedral defect
Abstract We obtain restrictions on units of even order in the integral group ring ZG$\mathbb {Z}G$ of a finite group G$G$ by studying their actions on the reductions modulo 4 of lattices over the 2‐adic group ring Z2G$\mathbb {Z}_2G$. This improves the “lattice method” which considers reductions modulo primes p$p$, but is of limited use for p=2$p=2 ...
Florian Eisele, Leo Margolis
wiley +1 more source
Strong External Difference Families and Classification of α‐Valuations
ABSTRACT One method of constructing ( a 2 + 1 , 2 , a , 1 )‐SEDFs (i.e., strong external difference families) in Z a 2 + 1 makes use of α‐valuations of complete bipartite graphs K a , a. We explore this approach and we provide a classification theorem which shows that all such α‐valuations can be constructed recursively via a sequence of “blow‐up ...
Donald L. Kreher+2 more
wiley +1 more source
Tensor powers of modules over finitely generated abelian groups
In an earlier paper [ 11, the authors investigated, as a major component of their final result, a special case of the following question. Let R be a commutative ring with unity, G a finitely generated abelian group and A4 a finitely generated RG-module. Consider the tensor power @“, M as an RG-module via the diagonal action of G.
Robert Bieri, J. R. J. Groves
openalex +3 more sources
Palindromic Width of Finitely Generated Solvable Groups [PDF]
We investigate the palindromic width of finitely generated solvable groups. We prove that every finitely generated 3-step solvable group has finite palindromic width.
V. Bardakov, Krishnendu Gongopadhyay
semanticscholar +1 more source
ABSTRACT Existing methods for constructing splines and Bézier curves on a Lie group G$$ G $$ involve repeated products of exponentials deduced from local geodesics, w.r.t. a Riemannian metric, or rely on general polynomials. Moreover, each of these local curves is supposed to start at the identity of G$$ G $$.
Andreas Müller
wiley +1 more source
Axion‐Like Interactions and CFT in Topological Matter, Anomaly Sum Rules and the Faraday Effect
This review investigates the connection between chiral anomalies and their manifestation in topological materials, using both perturbative methods based on ordinary quantum field theory and conformal field theory (CFT). It emphasizes the role of CFT in momentum space for parity‐odd correlation functions, and their reconstruction by the inclusion of a ...
Claudio Corianò+4 more
wiley +1 more source
Abelian varieties and finitely generated Galois groups [PDF]
Bo‐Hae Im, Michael Larsen
openalex +1 more source