Results 41 to 50 of about 34,919 (170)
Machine Learning Applied to High Entropy Alloys under Irradiation
Designing alloys for extreme environments demands fast, trustworthy prediction. This review charts how machine learning—especially machine‐learned interatomic potentials and predictive models based on experiment‐informed datasets—captures the complexity of high‐entropy alloys in extreme environments, predicts phase formation, mechanical properties, and
Amin Esfandiarpour +8 more
wiley +1 more source
This work reveals the phase composition and quantitative morphology analysis of precipitation‐hardened Fe32Cu12Ni11Ti16Al29 complex‐concentrated alloy. The precipitates are shown to have a high coherency. Morphology transition between sphere, cuboidal, and elongated morphology is observed. Finally, the overaging behavior is captured using microhardness.
Rostyslav Nizinkovskyi +4 more
wiley +1 more source
Magnetoactive Metamaterials: A State‐of‐the‐Art Review
Magnetoactive metamaterials combine magnetoactive composites with architected metastructures to enable contactless, tunable control of mechanical, acoustic, and elastic properties. This review highlights recent advances in their design, fabrication, and applications in soft robotics, biomedical devices, and adaptive structures and outlines future ...
Seyyedmohammad Aghamiri, Ramin Sedaghati
wiley +1 more source
This article presents a solver‐agnostic domain‐specific language (DSL) for computational structural mechanics that strengthens interoperability in virtual product development. Using a hierarchical data model, the DSL enables seamless exchange between diverse simulation tools and numerical methods.
Martin Rädel +3 more
wiley +1 more source
PBTTT‐OR‐R, a C14‐alkoxy/alkyl‐PBTTT polymer derivative, is of substantial interest for optoelectronics due to its specific fullerene intercalation behavior and enhanced charge‐transfer absorption. Comparing this polymer with (S) and without (O) homocoupling defects reveals that PBTTT‐OR‐R(O) forms stable co‐crystals with PC61BM, while PBTTT‐OR‐R(S ...
Zhen Liu +14 more
wiley +1 more source
In this study, the interplay of dipolar dynamics and ionic charge transport in MOF compounds is investigated. Synthesizing the novel structure CFA‐25 with integrated freely rotating dipolar groups, local and macroscopic effects, including interactions with Cs cations are explored.
Ralph Freund +6 more
wiley +1 more source
Experimental and Theoretical Confirmation of Covalent Bonding in α‐Pu
From a combination of Reverse Monte Carlo dynamic rigid body fitting to the pair distribution functional and novel density functional approaches, the existence of covalent bonding is confirmed in α‐plutonium alongside other bonding types (i.e. mixed bonding schemes).
Alexander R. Muñoz +10 more
wiley +1 more source
The pre‐internalization phase of endocytosis remains poorly characterized at single‐cell levels. Single‐cell pre‐internalization mechanics are investigated using advanced robotic techniques. Cancer cells exhibit biphasic adhesion – rapid initial binding followed by reinforcement – while fibroblasts show gradual engagement.
Houari Bettahar +6 more
wiley +1 more source
Laser‐Induced Graphene from Waste Almond Shells
Almond shells, an abundant agricultural by‐product, are repurposed to create a fully bioderived almond shell/chitosan composite (ASC) degradable in soil. ASC is converted into laser‐induced graphene (LIG) by laser scribing and proposed as a substrate for transient electronics.
Yulia Steksova +9 more
wiley +1 more source
AI is transforming the research paradigm of battery materials and reshaping the entire landscape of battery technology. This comprehensive review summarizes the cutting‐edge applications of AI in the advancement of battery materials, underscores the critical challenges faced in harnessing the full potential of AI, and proposes strategic guidance for ...
Qingyun Hu +5 more
wiley +1 more source

