Results 121 to 130 of about 192,633 (340)
Fast‐acting hydrogel seals bleeding wounds as the illustrated injectable, pH‐responsive network rapidly gels in situ to stop hemorrhage, adhere strongly to wet tissue, and release antibiotics in a controlled, pH‐dependent manner. The material withstands high pressures, shows excellent biocompatibility, and degrades safely, offering a versatile platform
Arvind K. Singh Chandel +5 more
wiley +1 more source
AI‐Assisted Workflow for (Scanning) Transmission Electron Microscopy: From Data Analysis Automation to Materials Knowledge Unveiling. Abstract (Scanning) transmission electron microscopy ((S)TEM) has significantly advanced materials science but faces challenges in correlating precise atomic structure information with the functional properties of ...
Marc Botifoll +19 more
wiley +1 more source
Refined Zigzag Theory for Laminated Composite and Sandwich Plates [PDF]
A refined zigzag theory is presented for laminated-composite and sandwich plates that includes the kinematics of first-order shear deformation theory as its baseline.
DiSciuva, Marco +2 more
core +1 more source
Hydrogels demonstrate material properties that mimic the mechanical and chemical environments of biological tissues. Yet, they face challenges during their integration into 3D interfaces. By identifying a class of thermoplastic hydrogels, a strategy is developed to pattern hydrogels in thermally drawn fibers.
Changhoon Sung +13 more
wiley +1 more source
This paper investigates the free vibration characteristics of plate structures supported by a Pasternak elastic foundation, utilizing the first-order shear deformation theory (FSDT). FSDT simplifies the plate theory by considering only first-order shear
Thanh Trung Nguyen +3 more
doaj +1 more source
Adaptive Twisting Metamaterials
This work introduces torque‐controlled twisting metamaterials as a transformative platform for adaptive crashworthiness. By combining multiscale predictive modeling with experimental validation on additively manufactured gyroids, it demonstrates tunable stiffness, collapse stress, and energy absorption.
Mattia Utzeri +6 more
wiley +1 more source
This study is based on typical thermal studies on thick, functionally graded material (FGM)-coupled plates and circular shells. Numerical studies have been previously published by researchers on the linear first-order shear deformation theory (FSDT ...
Chih-Chiang Hong
doaj +1 more source
Multiphase printable organohydrogels with tunable microstructures are developed to control molecular transport pathways for immiscible cargo. The tortuosity and domain size of the colloidal phases are tuned by adjusting temperature and shear during processing, which enables the tailoring of diffusion kinetics due to different transport pathways.
Riley E. Dowdy‐Green +4 more
wiley +1 more source
A new approach to extracellular matrix‐mimetic, hierarchical biomaterials is presented. Soft gels composed of overpacked hydrogel microparticle arrays present a biomolecularly crowded environment permissive to the self‐assembly of collagen networks.
Elif Narbay +11 more
wiley +1 more source
The vibration behavior of amalgamated plates of constant thickness under thermomechanical effects is investigated based on the first-order shear deformation theory (FSDT).
Saira Javed
doaj +1 more source

